

Tensor Visualisation

Visualisation – Lecture 14

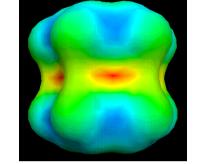
Taku Komura

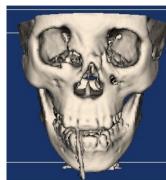
Institute for Perception, Action & Behaviour School of Informatics

Reminder: Attribute Data Types

Scalar

- colour mapping, contouring





Vector

lines, glyphs, stream {lines | ribbons | surfaces}

Tensor

- complex problem : active area of research
- today: simple techniques for tensor visualisation

Taku Komura

What is a tensor?

- A tensor is a data of rank k defined in n-dimensional space (IRⁿ)
 - generalisation of vectors and matrices in IRⁿ
 - Rank 0 is a scalar
 - Rank 1 is a vector
 - Rank 2 is a matrix
 - Rank 3 is a regular 3D array
 - k: rank defines the **topological dimension** of the attribute
 - Topological Dimension: number of independent continuous variables specifying a position within the topology of the data
 - n: defines the **geometrical dimension** of the attribute
 - i.e. k indices each in range 0→(n-1)

Tensors in ℝ³

- Here we limit of discussion to tensors in IR³
 - In ℝ³ a tensor of rank k requires 3^k numbers
 - A tensor of rank 0 is a scalar $(3^{\circ} = 1)$
 - A tensor of rank 1 is a vector $(3^1 = 3)$
 - A tensor of rank 2 is a 3x3 matrix (9 numbers)
 - A tensor of rank 3 is a 3x3x3 cube (27 numbers)

$$V = \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} \qquad T = \begin{bmatrix} T_{11} & T_{21} & T_{31} \\ T_{12} & T_{22} & T_{32} \\ T_{13} & T_{23} & T_{33} \end{bmatrix}$$

• We will only treat rank 2 tensors – i.e. matrices

Where do tensors come from?

- Stress/strain tensors
 - analysis in engineering
- DT-MRI
 - molecular diffusion measurements

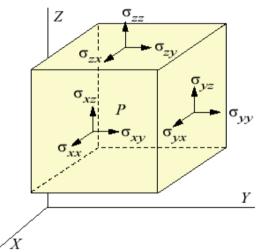
- These are represented by 3x3 matrices
 - Or three orthogonal eigenvectors and three corresponding eigenvalues

Stress Tensor

Say we are to apply force from various directions to a small box

 The stress at the surface can be represented by the stress tensor:

- σxx,σyy σzz indicates a 'normal' stress in x,y,z direction, respectively
- The rest indicates a **shear stress**



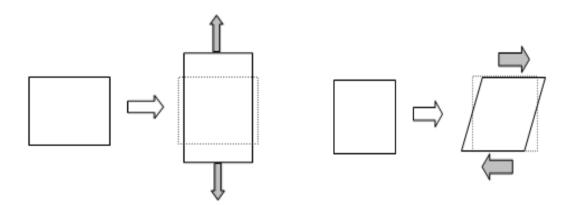
In the direction of

x: y: z

stress on the face normal to x: σ_{xx} σ_{xy} σ_{xz} stress on the face normal to y: σ_{yx} σ_{yy} σ_{yz} stress on the face normal to z: σ_{zx} σ_{zy} σ_{zz}

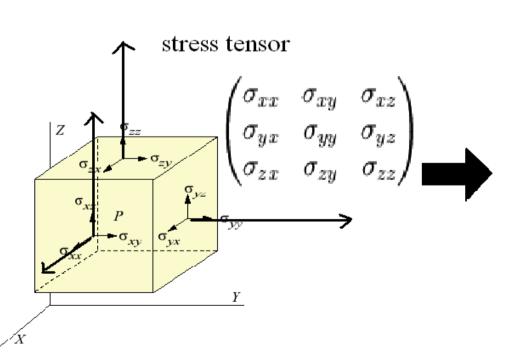
Stress Tensor

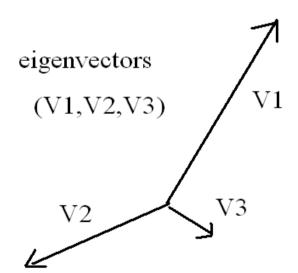
- A 'normal' stress is a stress perpendicular (i.e. normal) to a specified surface
- A shear stress acts tangentially to the surface orientation
 - Stress tensor : characterised by principle axes of tensor
 - We can compose a 3x3 matrix called Stress Tensor representing the stress added to the box
- This is for computing how much the shape gets distorted by the stress



Computing Eigenvectors from the Stress Tensor

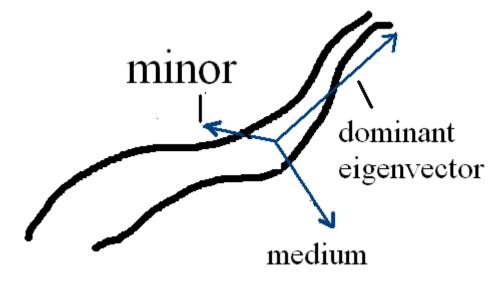
- 3x3 matrix results in **Eigenvalues** (scale) of normal stress along **eigenvectors** (direction)
- form 3D co-ordinate system (locally) with mutually perp. Axes
- ordering by eigenvector referred to as major, medium and minor eigenvectors





Diffusion Tensor-MRI : diffusion tensor

- Water molecules have anisotropic diffusion in the body due to the cell shape and membrane properties
 - Neural fibers: long cylindrical cells filled with fluid
 - Water diffusion rate is fastest along the axis
 - Slowest in the two transverse directions
 - brain functional imaging by detecting the anisotropy
 - Again, we can represent the diffusion tensor by the eigenvectors and eigenvalues



Tensors: Visualisation Methods

- For visualization of tensors, we have to visualize
 - three vectors orthogonal to each other
 - At every sample point in the 3D space

Vector methods

- hedgehogs
- Streamline, hyper-streamline

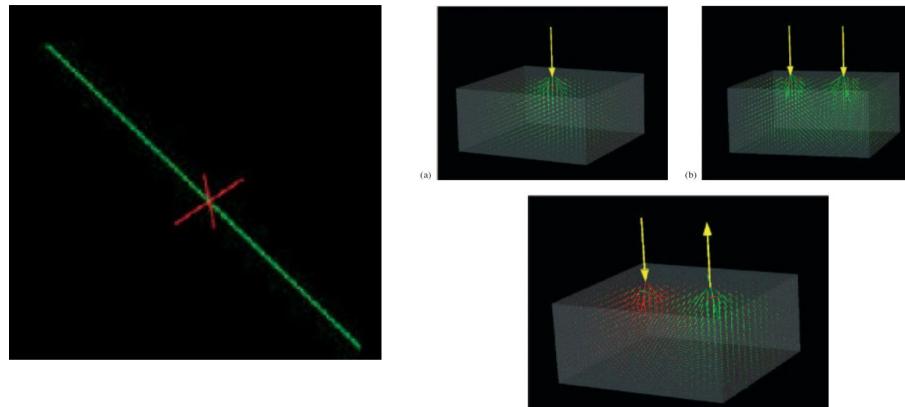
Glyphs

3D ellipses particularly appropriate

(3 modes of variation)

Taku Komura

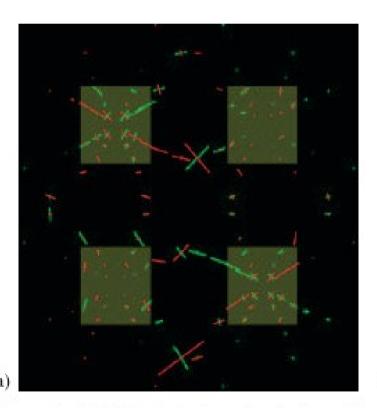
Hedgehogs



- Using hedgehogs to draw the three eigenvectors
 - The length is the stress value
- Good for simple cases as above
 - Applying forces to the box

Hedgehogs

- Not good if
 - The grid is coarse
 - The stress is non-uniform, non-linear across the object



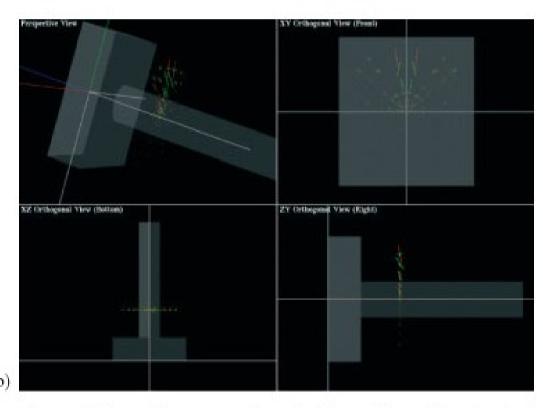
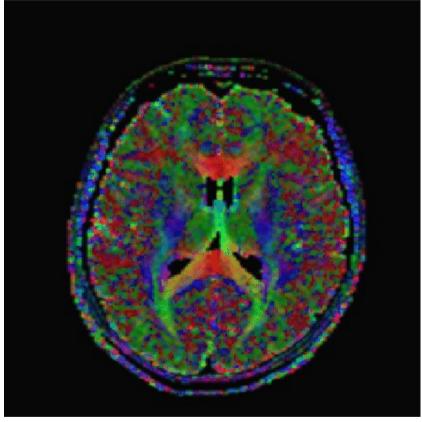


Figure 7. (a) Principal stress hedgehogs for one layer of four-pile group close to the surface, (b) principal stress hedgehogs for a layer just beneath the pile cap for a single pile.

Tensor Visualisation by Colormap



Source: R. Sierra

- Visualise just the major eigenvectors as a vector field
 - alternatively medium or minor eigenvector

e.g. Major eigenvector direction visualised with

$$(u,v,w) \longrightarrow (r,g,b)$$
 colourmap.

Streamlines for tensor visualisation

- Each eigenvector defines a vector field
- Using the eigenvector to create the streamline
 - We can use the Major vector, the medium and the minor vector to generate different streamlines

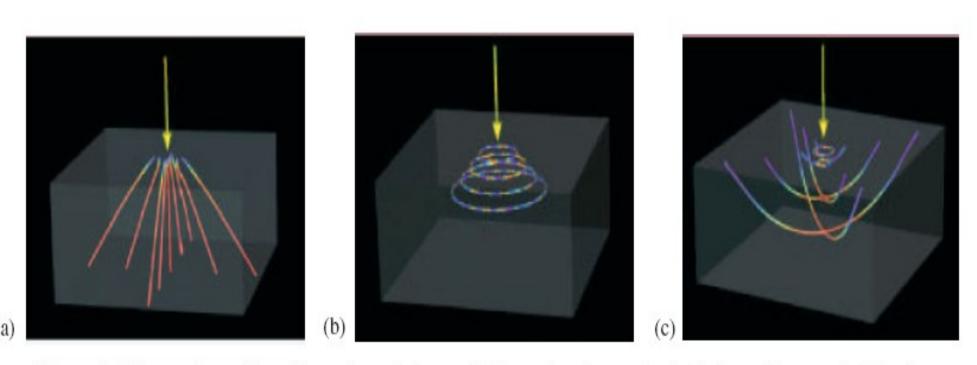
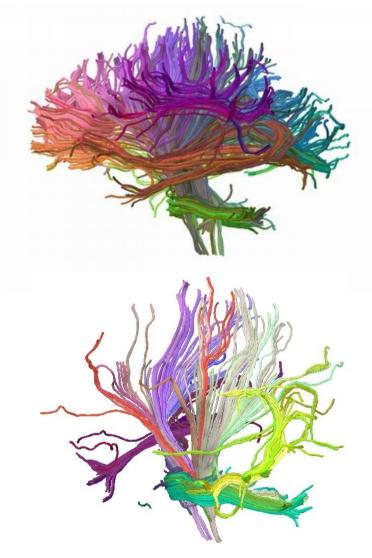


Figure 8. Hyperstreamlines for minor, intermediate and major principal stress for a point-load.

Streamlines for MRI

- For DT-MRI, major vector indicates nerve pathways or stress directions.
- Visualization of the brain nerves by the streamlines based on the major eigenvectors of the water diffusion

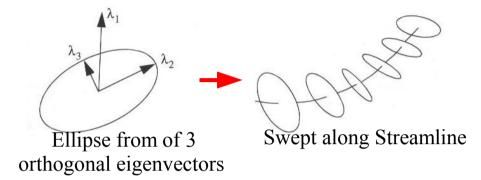


http://www.cmiv.liu.se/

Hyper-streamlines

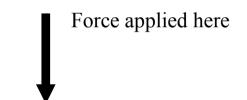
[Delmarcelle et al. '93]

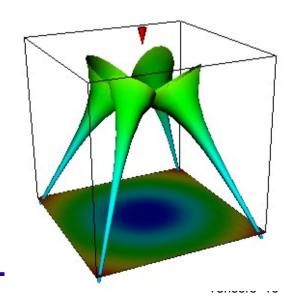
 Construct a streamline from vector field of major eigenvector



- Form ellipse together with medium and minor eigenvector
 - both are orthogonal to streamline direction
- Sweep ellipse along streamline
 - Hyper-Streamline (type of stream polygon)

Visualizing the information of the three eigenvectors altogether!

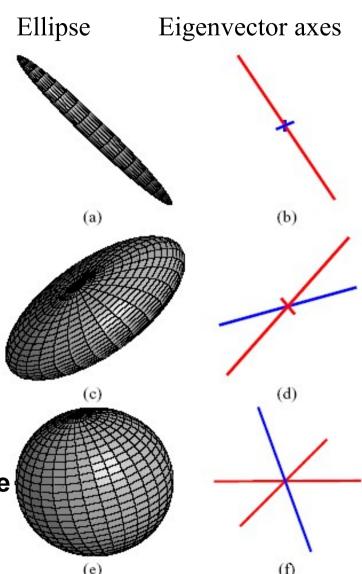




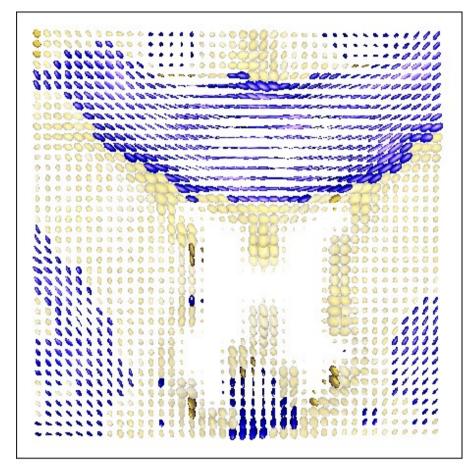
Tensor Glyphs

Ellipses

- rotated into coordinate
 system defined by eigenvectors of tensor
- axes are scaled by the eigenvalues
- very suitable as 3 modes of variation
- Classes of tensor:
 - (a,b) large major eigenvalue
 - ellipse approximates a line
 - (c,d) large major and medium eigenvalue
 - ellipse approximates a plane
 - (e,f) all similar ellipse approximates a sphere



Diffusion Tensor Visualisation



Baby's brain image

(source: R.Sierra)

The brain consists of different types of tissues with different diffusions

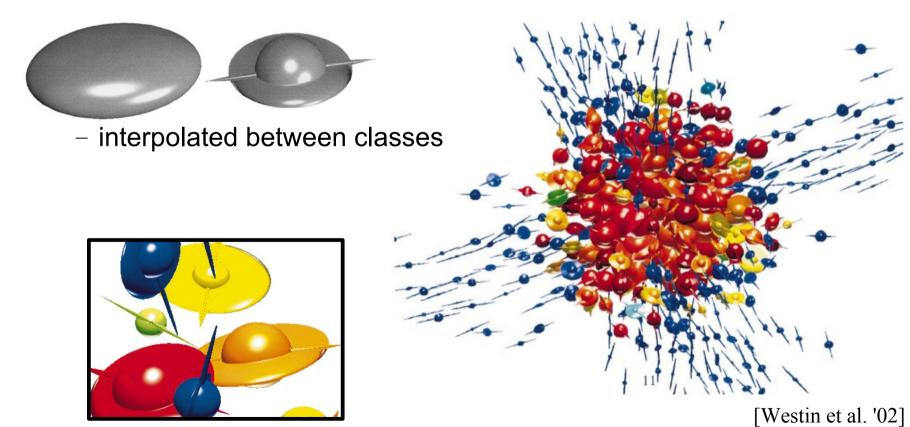
Anisotropic tensors indicate nerve pathway in brain:

- Blue shape tensor approximates a line. (nerves)
- Yellow shape tensor approximates a plane.
- Yellow transparent shape ellipse approximates a sphere

Colours needed due to ambiguity in 3D shape

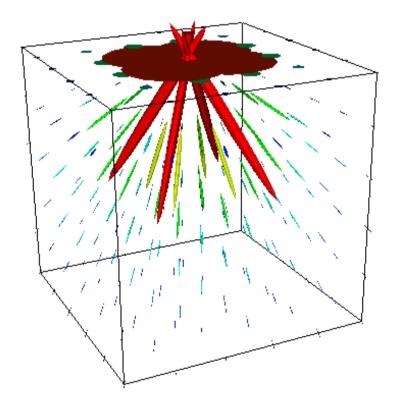
Example: tensor glyphs

- Glyphs with similar positional and modes of shape variation to ellipsoid used for MRI diffusion tensor visualisation
 - disambiguates orientation



Stress Ellipses

Force applied here



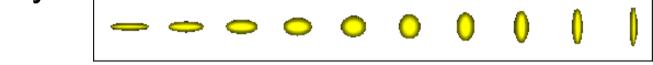
- Force applied to dense 3D solid

 resulting stress at 3D position
 in structure
- Ellipses visualise the stress tensor
- Tensor Eigenvalues:
 - Large major eigenvalue indicates principle direction of stress
 - 'Temperature' colourmap indicates size of major eigenvalue (magnitude of stress)

Interpolation of Tensors

How do we interpolate over tensors?

Can simply interpolate over eigen-components individually:



 But if it represents specific information (e.g. nerve pathway) then shape preserving methods are preferred:

Summary

- Tensor Visualisation
 - challenging
 - for common rank 2 tensors in ℝ³
 - common sources stress / strain / MRI data
 - a number of methods exist via eigenanalysis decomposition of tensors
 - 3D glyphs specifically ellipsoids
 - vector and scalar field methods
 - hyper-streamlines