

Vector Field Visualisation

Visualisation – Lecture 12

Taku Komura

Institute for Perception, Action & Behaviour School of Informatics

Visualising Vectors

- Examples of vector data:
 - meteorological analyses / simulation
 - medical blood flow measurement
 - Computational simulation of flow over aircraft, ships, submarines etc.
 - visualisation of derivatives
 - not just of flow itself

- Why is visualising these difficult ?
 - 2 or 3 components per data point, temporal aspects of vector flow, vector density

Insight in Vector Fields

- Two properties of vector fields to visualise :
 - local view of the flow
 - global view of the flow
- e.g a meteorological wind forecast
 - Local : for given location, what is the current wind strength and direction
 - Global: a given location, where has the wind flow come from, and where will it go to.

Two Methods of Flow Visualisation

- Visualise Flow wrt fixed point
 - e.g. plot flow glyphs to show local direction and magnitude
 - local view of vector field

- Visualise flow as the trajectory of a particles transported by the flow
 - e.g plot particle traces, streamlines etc.
 - global view of vector field
 - require integrating the flow equation

State of Flow : Steady / Unsteady

- Steady flow
 - remains constant over time
 - state of equilibrium or snapshot
 - use massless particle traces known as streamlines
- Unsteady flow
 - varies with time
 - implications to tracing massless particles
 - particle traces known as streaklines
 - show little information about flow direction or magnitude

Vectors : local visualisation

- Set of basic methods for showing **local view**:
 - oriented lines, hedgehogs & glyphs
 - colour mapping vector components (lecture 5)
 - warping
 - animation

Local vector visualisation : lines

- Draw line at data point indicating vector direction
 - scale according to **magnitude**
 - indicate direction as vector orientation
- problems
 - non-uniform spacing
 - showing lower magnitude areas large dynamic range field

- e.g. speed

- **Option** : use barbs to show speed
- Often referred to as **hedgehogs** !

Example : meteorology

NOAA/FSL

Lines are drawn with constant length, *barbs* indicate wind speed. Also colour mapped scalar field of wind speed.

Example : lines in 3D

• Problems :

- Difficult to understand position and orientation in projection to 2D image.
- Clutter is also a problem.

Local vector visualisation : colour map

Dense Normal Vectors in 3D capture of large scale environment

X component = Red. Y component = Green Z component = Blue.

Returned laser power

Distance to object (darker is closer – black is no data)

Local vector visualisation : Glyphs

2D or 3D objects

- inserted at data point, oriented with vector flow
- problem : scaling
 - scaling glyph results in non-linear change in appearance
 - surface area changes with square of size
- problem : clutter

- e.g. blood flow (reduced data)
 - colourmap shows magnitude in addition to glyph scale

Local vector visualisation : Warping

- deform geometry according to the vector field
 - vector fields often associated with motion, or displacement.
 - e.g vibration of a beam.

Example : warping

- Insert slice planes into the data volume
- Displace surface according to flow momentum
 - take care with scaling to avoid excessive geometric distortion
 - surfaces may intersect, or even turn inside-out

Local vector visualisation : animation

- Animation to enhance lines or glyphs
 - improved clarity of magnitude and/or direction
 - draw lines or glyphs & animate over time
 - removes ambiguity in line or glyph direction
 - also move glyphs along a streamline to visualise transport

Vector Field Visualisation : local & global

- Vector Fields specify flows through the field
 - **aim** : visualise flow in field
- Two properties of vector fields to visualise

- local view

- with respect to a fixed point
- e.g. glyphs, lines, warping, displacement etc.
- global view
 - trajectory of particles transported by vector field

Particle trace

- **Particle trace :** the path over time of a massless fluid particle transported by the vector field
- The particle's velocity is always determined by the vector field

Solve using numerical integration methods.

Stream & Streak lines : the difference

- **Streakline :** the set particle traces **at a particular time** that have previously passed through a specific point **(snapshot)**
 - Path of the particles that were released from a point x0 at times t0< s < t
- **Streamline :** integral curves along a curve s satisfying:

$$s = \int_{s} \vec{V} \, ds \,, \text{ with } s = s(x, \overline{t})$$

at a fixed time \overline{t}

 Integral in the vector field while keeping the time constant

Streamlines

- Always tangent to the vector field
 - Fluid do not cross streamline
 - streamlines technically not particle traces
- For steady flows
 - streamlines == streaklines
 - -2 are equivalent
- For unsteady flow

- Every streamline only exists at one moment in time
- Always changing its shape

Example : convection streaklines

Ventilation simulation of a kitchen.Steady state or equilibrium.

Thirty **streaklines** initiated under a window.

Colour mapped (lecture 5) by air pressure (with is scalar).

Note the warm air convected by the hot stove.

Showing motion over time

• A scaled, oriented line is an approximation to a particle's motion in the flow field

If velocity
$$V = \frac{dx}{dt}$$

Displacement of a point is $dx = \vec{V} dt$

 Need to integrate in order to draw streamlines / streaklines

Numerical Integration

- Numerical Integration : beyond scope course
 - Accuracy depends on step size dt
 - Results require careful examination
- But ... What do we mean by error in the context of visualisation ?
 - At least to make it appear nice
 - Should avoid the path to diverge!
 - It is numerically and visually bad!

Numerical Integration : Euler's Method

 $\vec{x}(t) = \int_{t} \vec{V} dt$ Euler's method :

$$\vec{x_{i+1}} = \vec{x_i} + \vec{V_i} \Delta t$$

New position $\vec{x_{i+1}} = old position$, $\vec{x_i} plus$ instantaneous velocity times incremental time step

Numerical Error is $O(\Delta t^2)$

Problem with Euler's method

Rotational flow field.

With Euler's method, integrated flow occurs in a spiral.

• With a rotational flow field – Euler's method wrongly diverges due to error

Runge-Kutta method, 2nd Order

Euler's method :
$$\vec{x_{i+1}} = \vec{x_i} + \vec{V_i} \Delta t$$

Runge-Kutta method :

$$\vec{x_{i+1}} = \vec{x_i} + \frac{\Delta t}{2} (\vec{V_i} + \vec{V_{i+1}})$$

 $\vec{V_{i+1}}$ is calculated using Euler's method .

Error is $O(\Delta t^3)$

(assuming $0 < \Delta t < 1$)

2nd Order Runge-Kutta

- Improves accuracy, but more expensive
 - additional function evaluation
 - $N.B. \quad 0 < \Delta t < 1$
- Larger time-step for same error
- 4th Order Runge-Kutta also popular for integration
- Best method depends on data and interpretation

Example : thunderstorm simulation

1:02:11

- Massless particles are introduced in a regular grid
 - Orange indicates ascending
 - Blue indicates descending

 $http://www.mediaport.net/CP/CyberScience/BDD/fich_050.en.html$

Example : thunderstorm simulation

- Streamers indicate air movement, colours are used as before.
 - Rotation of air is shown by a ribbon.

http://www.mediaport.net/CP/CyberScience/BDD/fich_050.en.html

Initialisation of Streamlines

- Streamlines usually initialised along a curve, or *rake*
- Often initialised at a source (e.g. engine thrust)
- Results can vary depending on placement of rake

NASA Ames, FAST system

Lines & Points

- visualise particle trace with points
 - show all points simultaneously (like time-lapse photograph)
 - or animate the points over time (for trajectory trace)
 - can connect the points with lines
- colour mapping to show speed, or use dashes, with length proportional to speed
- Use **ribbons or tubes** to show other properties (next lecture)

VTK : Streamlines

- vtkStreamer
 - base class
 - performs numerical integration to generate particle paths
- vtkStreamLine
 - derived class
 - produces connect stream lines from integration results
- vtkDashedStreamLine / vtkStreamPoints
 - derived classes

VTK : Stream Points

Stream Points (points along stream line at given separation) N.B. rake = 2D grid

VTK : Dashed Stream Line

Example : carotid artery

- Visualisation using VTK streamlines
 - solves clarity issues of glyphs

streamV.tcl

Vector Visualisation Summary

- Vector visualisation:
 - local view / global view
 - steady / unsteady flow
- Local Vector Visualisation:
 - lines, hedgehogs & glyphs
 - colour mapping, warping & animation
- Global View of Vector Fields
 - visualising transport
 - requires numerical integration
 - Euler's method
 - Runge-Kutta
 - stream {lines | points | glyphs }