Overview

- Massive amounts of data
 - effect on precision
 - lots of data beats better algorithms
- Link analysis
 - PageRank
 - Hubs and Authorities (HITS)
 - Anchor Text
 - Link spam

Amount of data: precision

- Staggering amount of data (Google: 20PB/day in 2008)
 - challenging but surprisingly makes some things easier
- Collection ... a (random) sample of the web
 - suppose we gathered N documents, precision@10 = 40%
 - what if we gathered 4*N documents?

Big data beats clever algorithms

- Question Answering task (e.g., IBM Watson):
 - Q: Who created the character of Scrooge?
 - A: Scrooge, introduced by Charles Dickens in "A Christmas Carol" ...
 - requires heavy linguistic analysis, lots of research in TREC
- 2002, Microsoft:
 - identify (sub)verb obj), rewrite as queries:
 - Q1: "reveal the character of Scrooge"
 - Q2: "the character of Scrooge was created by"
 - run on the web, take 500 top-ranked docs
 - extract phrase: [NP:Q1 or Q2:NP], find most frequent [NP]
 - very naive approach, ignores thousands of answer patterns...
 - doesn't matter: web is huge: guaranteed to get a match

Links between pages

- Google's description of PageRank:
 - relies on the "uniquely democratic" nature of the web
 - interprets a link from page A to page B as "a vote"
 - A → B means A thinks B is worth something
 - "wisdom of the crowds": many links mean B must be good
 - content-independent measure of quality of B
- Use as a ranking feature, combined with content
 - but not all pages that link to B are of equal importance
 - a single link from Slashdot or CNN may be worth thousands
 - how many "good" pages link to B

PageRank Algorithm

- Initialize PR(X) = 100/N
 - total number of pages in our collection
- For every page X:
 - PR(X) ← \(\sum_{Y \rightarrow X} \frac{PR(Y)}{N} \)
 - y → x contributes part of its PR to x
 - spreads PR equally among out-links
 - PR scores should sum to 100%
 - use two arrays: PR(i) → PR(i+1)
- Example:
 - PR(A) = 0.18 * 9.1 + 0.02 * \(\frac{PR(B)}{N} \)
 - PR(B) = 0.18 * 9.1 + 0.02 * (PR(A) + \(\frac{PR(C)}{N} \))
 - PR(C) = 0.18 * 9.1 + 0.02 * 9.1 + 9.1
 - PR(D) = 0.18 * 9.1 + 0.02 * 9.1 + 9.1

PageRank example: result

- Algorithm converges (few iterations sufficient)
- Observations:
 - pages with no in-links: PR = (1-\(\lambda \)) * I/N = 18% / 11 = 1.6%
 - same (or symmetric) inlinks ⇒ same PR
 - one inlink from high PR >> many from low PR
- Hint: think about equilibrium

PageRank using MapReduce

- Mapper: \(\langle i, x \rangle \mapsto \text{node} \oplus \text{out-links} \)
 - for \(j=1..n \) emit \(\langle j, PR(i) \rangle \)
 - emit \(\langle i, \text{out}(i) \rangle \)
- Reducer: \(\langle j, \text{out}(i) \rangle \mapsto 1/\text{out}(i) \)
 - compute: \(PR(i) = \frac{1-\lambda}{N} + \sum_{j=1..n} \frac{PR(j)}{\text{out}(j)} \)
 - for \(j=1..n \) emit \(\langle i, PR(i) \rangle \)
 - emit \(\langle i, \text{in}(i) \rangle \)
- Results go into another reducer (multi-step job)
PageRank: sink nodes

- Consider a simple graph: A → B, assume λ = 0.8
 - PR(A) = (1-λ)/2 + λ = 0.1 ... after update 1, and stays like this
- PR(B) = (1-λ)/2 + λ = 0.18... after update 2, and stays like this
- PR(A) = PR(B) = 0.25 = 72% of the PR is lost
- B is a “sink” (dead end, no outgoing links)
 - with probability (1-λ) jump to another node (PR is shared)
 - with probability λ ... (PR is lost)
- Correction:
 - re-normalize PR to sum to 1 (over-estimates PR for high-in-link nodes)
 - connect sink nodes to every node in the graph (expensive)
 - PR(x) = \frac{1 - λ}{N} + \frac{λ}{N} \sum_{y \in S(x)} PR(y)
 - S = sum of PR over sinks (re-compute before each update)

Hubs and Authorities

- PageRank: simplistic view of a network
- Network topology: different node types:
 - “hub”: page that points to a lot of others
 - e.g. Yahoo / DMZ directory
 - “authority”: page that many others refer to
 - authoritative view on some subject
- HITS algorithm [Kleinberg, 1997]
 - Hyperspace Induced Topic Search
 - automatically determine hubs/authorities
 - PageRank as “half” of HITS

HITS algorithm

- \textit{H}(x), \textit{A}(x) ... hub, authority scores
 - initialize as 1/N, N ... number of pages
 - a good hub links to many good authorities
 - a good authority is referenced by many hubs
 - normalize A,H: \frac{\sum_{y \in N(x)} H(y)}{\sum_{y \in N(x)} A(y)} = 1
 - in practice:
 - used on result set (not all docs like PageRank)
 - developed for IBM Clever project
 - variant used by Teoma (now Ask.com)

Link Spam

- Trackback links (blogs that link to me)
 - based on IP/URL_REFERER
 - artificial feedback loops
- Links from comments on sites with high PR
 - One solution: insert rel=nofollow into links
 - link ignored during PR computation
- Link farms
 - take densely-connected graph
 - hundreds of web domains / IPs can be hosted on one machine

Anchor text

- HTML links contain anchor text
 - description of destination page
 - short, descriptive, like a query
 - re-formulated in different ways
 - human “query expansion”
 - Used in addition to page content
 - together with URL tokens
 - also “surrounding text”
- separate “weights” for every component
 - Significantly more effective than PageRank

Summary

- Massive amounts of data
 - challenging for efficiency, but improves effectiveness
- PageRank
 - probability that random surfer is currently on page x
- Hubs and Authorities (HITS)
 - asymmetric, recursive: good hubs → good authorities
- Anchor Text
 - short, concise description of content on the target page
- Link Spam
 - trackback links, link farms