Text Technologies

Vector Space Model of IR
Victor Lavrenko

Basic VS: dimensions = words
- Separate dimension for each distinct word
 - words ≠ coordinate vectors
- Value along dimension "cat" = number of times "cat" occurs

Comparing documents to queries
- Distance between points in space
 - Euclidean, or angle between vectors
 - Usually expressed as similarity
 - Distance: D(A, B) = √(Σ (aᵢ - bᵢ)^2)

Inverse Document Frequency
- Observation 4: Rare words carry more meaning
 - Overt, covert, adverbial, . . . , topical content
 - Said, went, of the big, etc. . . , linguistic glue
- Give more weight to rare words: Inverse Document Frequency
 - df(A) = number of documents in collection
 - df(A) = number of documents containing
 - New similarity formula:

Dot product
- Similarity of document vectors a and b:
 - a × b = [a₁b₁, a₂b₂, . . . , aₙbₙ]
 - a × b = ∑aᵢbᵢ
- Geometrically:
 - Length of projection of b onto a
 - 0 if a and b are orthogonal (no words in common)
 - Cosine of the angle between a and b
 - Relation to Euclidean distance between a and b:
 - d(a, b) = √(Σ (aᵢ - bᵢ)^2)
 - Equivalent if a and b are unit-length:
 - 1 - a × b = ∑[aᵢbᵢ]
 - Relation to intersection of sets a, b:
 - |a ∩ b| = ∑aᵢbᵢ
 - If word "cat" belongs to a, otherwise a
 - a × b = a₁b₁ + a₂b₂
 - Words that belong to b and a:

Inverse Document Frequency (idf)
- Very effective heuristic for picking out important words
- Sometimes idf used on the query weights qᵢ
- Logarithm to put idf on the same scale as the tf component

Bag-of-words matching
- Only in story 1
 - about
 - computer
 - only
 - each
 - space
 - our
- In both stories
 - binary
 - explaining
 - home
 - love
 - scale
 - through
 - are
 - in
- Only in story 2
 - astronomy
 - been
 - been
 - born
 - could
 - could
 - computer
 - either
 - mass
 - planar
 - others
 - prefer
 - radar
 - sophisticated
 - beam

How to combine all this into a similarity measure?

Vector Space Model
- Everything is a vector in some high-dimensional space
 - Words, documents, queries, user preferences
 - Issues to consider
 - What are the dimensions of that space (basis vectors)?
 - How to project words/documents/queries to that space?
 - How to compare documents and queries?
- Dimensions
 - Basis: set of line-independent (orthogonal) basis vectors
 - “Core” semantic concepts: works on toy datasets
 - Words in the corpus: one dimension per distinct word
 - Not orthogonal, huge dimensionality, constantly-growing

Term (word) Weighting
- Term weight: relative importance of word in a doc
 - D(A) coordinate of D along dimension w
 - Observation 1: presence / absence most important
 - Weight = 1 if word present, 0 otherwise
 - Document = binary vector = set
 - Observation 2: key words tend to be repeated in a doc
 - tf(w, D) = number of times w occurs in D
 - Observation 3: biased towards long documents
 - Long docs -> higher tf, spurious word occurrences
 - Normalize by document length |D|:

Frequency Normalization
- Observation 5:
 - Q = "angry aardvark"
 - D₁ = "... angry . . . aardvark . . ."
 - D₂ = "... aardvark . . . aardvark . . ."
 - Is D₁ or D₂ more relevant? Which will be ranked higher?
- Correction:
 - First occurrence more important than a repeat (why?)
 - Squash the growth of term frequency
 - Larger K = less (no squash)
 - Small K = step function
 - Observation 6:
 - Repetitions important in long docs
 - Make it reflect document length

tf-idf selects informative terms

DC-9 WITH 55 ABOARD CRASHES; AT LEAST 16 DEAD
CHARLOTTE, N.C. (AP) — A DC-9 with 55 people on board crashed and burned into trees during a thunderstorm after making an approach to Charlotte Douglas International Airport Saturday, killing at least 16 people. The flight, which originated in Columbia, S.C., and was on final approach, hit a house near the airport as it attempted to land, said...
tf.idf weighted sum

\[s(Q, D) = \sum_{w \in D} \left(\frac{f_w}{|D|} \log \frac{1}{df_w} \right) \]

The more query words we match, the better. Over the vocabulary.
- rank documents in order of decreasing \(s(Q, D) \)
- state-of-the-art ranking formula for short queries
- variations actively used by many search engines

Vector similarity measures

\[s(Q, D) = \sum_{w \in D} \left(\frac{f_w}{|D|} \log \frac{1}{df_w} \right) \]

- inner product
- Jaccard coefficient
- Cosine coefficient
- differences minor compared to how you set \(Q_w, D_w \)

Normalized to unit length \(\rightarrow \) all rank-equivalent to dot product

Example: weighted cosine

\[D = 0.5 \ast \text{cat} + 0.8 \ast \text{dog} + 0.3 \ast \text{lion} \]
\[Q = 0 \ast \text{lion} + 1.5 \ast \text{cat} + 0.1 \ast \text{dog} \]

Cosine coefficient:

\[\cos(\theta) = \frac{Q \cdot D}{\|Q\| \cdot \|D\|} = \frac{0.5 \cdot 0.5 + 0.8 \cdot 0.8 + 0.3 \cdot 0.3}{\sqrt{0.5^2 + 0.8^2 + 0.3^2} \sqrt{0.5^2 + 0.5^2 + 0.3^2}} = 0.888 \]

More distance / similarity measures

\[\rho \cdot \text{norm distance} = \rho \cdot \sqrt{\sum_{w \in D} (Q_w - D_w)^2} \]

p=2, Euclidean
p=1, Manhattan
p=\infty, max |Q_w-D_w| = logical OR
p=0, min |Q_w-D_w| = logical AND

- Treat documents / queries as word histograms
- \(Q_w, D_w \) non-negative, add up to 1
- \(k_w = \sum_{w \in D} \log Q_w \)

- Remember to convert distance to similarity (e.g. negate)
- Still need to set weights \(Q_w, D_w \)

Beyond bag-of-words

VSM: dimensions = words

- Can try phrases:
 - term: pair of adjacent words
 - or words in a k-word window
- or use NLPI:
 - noun phrases / verb phrases
 - head-modifier pairs
 - dependency chains
- Intuitively appealing, but:
 - very hard to beat words
 - weighting very important

Uses of VSM

- Not just ranking documents in response to query
- Any time you want to know if text A is similar to text B:
 - does this essay look like the writing of author B?
 - does patent A infringe on any part of patent portfolio B?
 - does email A look more like spam emails?
 - is piece of code similar to any part of system B?
- Determine if word/phrase A is similar to word/phrase B:
 - inverted list for a word is a vector over documents
 - similarity(\text{cat, lion}) = cosine of their inverted lists
 - need to customize weighting (no idf, length\(^2\), etc.)

Summary

- Everything is a vector, one dimension per word
- Rank by similarity of document vectors to query
 - dot product or cosine of the angle between vectors
- Term weighting: very important, \(tf.idf \) is universal

Heuristic in nature:
- easy to assimilate good ideas from other retrieval models
- components not interpretable \(\rightarrow \) no guide what to try next
- encourages ad-hoc engineering: tweak, test out, tweak...
- no notion of relevance (\(= \) similarity?)
- Very popular, hard to beat