Text Technologies

Probabilistic Model of IR
Victor Lavrenko

Probability Ranking Principle
- Robertson (1977)
 - "If a reference retrieval system's response to each request is a ranking of the documents in the collection in order of decreasing probability of relevance to the user who submitted the request,
 - where the probabilities are estimated as accurately as possible on the basis of whatever data have been made available to the system for this purpose,
 - the overall effectiveness of the system to its user will be the best that is obtainable on the basis of these data.
- Basis for most probabilistic approaches to IR

PRP = best possible ranking
- Let \(D = \{ \text{Document}, \text{Query}, \text{User}, \text{Task}, \text{Context}, \ldots \} \)
- Rank documents by \(p_r = P(R=1|D) \)
 - \(p_r \) should be highest
 - expected precision at rank \(r \)
 - expected recall at rank \(r \)
 - \(P \) at rank, average precision, etc.
- Ranking version of Bayes error rate
 - best possible classification rate:
 - relevant if \(P(D,R=1) > P(D,R=0) \)

Optimality of PRP
- Retrieving a set of documents:
 - PRP equivalent to Bayes error criterion
 - optimal w.r.t. classification error
- Ranking a set of documents:
 - optimal w.r.t. precision / recall at a given rank average precision, etc.
- Need to estimate \(P(\text{relevant} | \text{document}, \text{query}) \)
 - many different attempts to do that
 - Classical Probabilistic Model (Robertson, Sparck-Jones)
 - also known as Binary Independence model, Okapi model
 - very influential, successful (BM25 ranking formula)

Let's dissect the PRP
- rank documents ... by probability of relevance
 - \(P(\text{relevant} | \text{document}) \) ...
 - \(P(\text{relevant} | \text{document}, \text{query}, \text{session}, \text{user}, \text{context}, \text{task}) \)
 - estimated as accurately as possible
 - \(P_{\text{rec}} \) (relevant | document) \(\Rightarrow P_{\text{rec}} \) (relevant | document, query)
 - based on whatever data is available to system
- best possible accuracy one can achieve with that data
 - recipe for a perfect IR system: just need \(P_{\text{rec}}(\text{relevant} | \ldots) \)
 - strong stuff, can this really be true?

Classical probabilistic model
- Assumption A0:
 - relevance of \(D \) doesn't depend on any other document
 - made by almost every retrieval model (exception: cluster-based)
- Rank documents by \(P(R=1|D) \)
 - \(R \sim \{0,1\} \)
 - Bernoulli RV indicating relevance
 - \(D \) represents content of the document
- Rank-equivalent:
 - \(P(R=1|D) = \frac{P(R=1|D) \cdot P(D | R=1) \cdot P(D)}{P(D)} \)
 - \(P(R=0|D) = \frac{P(R=0|D) \cdot P(D | R=0) \cdot P(D)}{P(D)} \)

Motivation
- Vector-space is very heuristic in nature
 - why does it work? no notion of relevance anywhere
 - any weighting scheme, similarity measure can be used
 - components not interpretable - no guide for what to try next
 - encourages ad-hoc engineering (tweak, rank, observe, tweak)
 - very popular, hard to beat, good baseline
- easy to assemble good ideas from other models
- Probabilistic Model of Retrieval
 - mathematical formalism for relevant / non-relevant sets
 - explicitly define random variables (R, D, Q)
 - be specific about what their values are
 - state the assumptions behind every step
 - watch out for contradictions

Probability of relevance
- What is \(P_{\text{rec}} \) (relevant | doc, qry, session, user, context, task)?
 - isn't relevance just the user's opinion?
 - user decides relevant or not, what is this "probability" thing?
- Search algorithm cannot look into your head (yet)
 - relevance depends on features that algorithm cannot observe
 - different users may disagree on relevance of same doc
 - even similar users, doing the same task, in the same context
- \(P_{\text{rec}} \) (relevant | Q, D)
 - proportion of all unseen users / contexts / tasks for which \(D \) would have been judged relevant to \(Q \)
- Analogy: \(P(D \in S | \text{even and not square}) \)
Probabilistic model: assumptions

- Want \(P(D|R=1) \) and \(P(D|R=0) \)

- **Assumptions:**
 - **A1:** \(D = \{D_1, ..., D_n\} \) - one RF for every word \(w \)
 - Bernoulli: values 0,1 (word either present or absent in a document)
 - **A2:** \(D_w \) are mutually independent given \(R \)
 - Blatantly false: presence of "Barack" tells you nothing about "Obama"
 - But must assume something: \(D \) represents subsets of vocabulary (without assumptions: \(2^{|\text{all elements}|}\) possible events
 - Allows us to write:
 \[
 P(R=1|D) = \frac{P(D|R=1)}{P(D|R=0)} \prod_{w} P(D_w|R=R) \prod_{w} P(D_w|R=R)
 \]
 - Note: identical to the Naive Bayes classifier
 - With equal priors

Example (with relevance)

- Relevant docs: \(D_1 = \{a, b, c, d\} \), \(D_2 = \{a, b, e\} \)
- Non-relevant: \(D_3 = \{b, c, d\} \), \(D_4 = \{b, e\} \), \(D_5 = \{a, b, c, e\} \)
- Word: \(a \), \(b \), \(c \), \(d \), \(e \)
- \(N_w \) (w): \(\frac{2}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \)
- \(N_w(D_1) \): \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \)
- New document: \(D_6 = \{c, b, g\} \)

Estimation (without R)

- Assumption A4: \(p_w = q_w \) for \(w \in Q \)
 - If the word is not in the query, it is equally likely to occur in relevant and non-relevant populations
 - Practical reason: restrict product to query - document overlap

- Assumption A5: \(p_w = 0.5 \) for \(w \in Q \)
 - Assumption: \(p_w \) and \(q_w \) cancel out

- Assumption A6: \(q_w = N_{w} / N \) for \(w \in Q \)
 - Non-relevant set approximated by collection as a whole
 - Very reasonable: most documents are non-relevant

Modeling word dependence

- Classical model assumes all words independent
 - Blatantly false, made by almost all retrieval models
 - The most widely criticized assumption behind IR models
 - Should be able to do better, right?

- Tree dependence model (van Rijsbergen, 1977)
 - Structure dependencies as maximum spanning tree
 - Each word depends on its parent (and R)
 - Total parameters: twice that of BIR

Do dependence models work?

- Many similar attempts since the original
 - Dozens published results, probably hundreds of attempts
 - Many different ways to model dependence
 - Never consistent improvement: always "promising results"

- Why? It works in other fields.
 - Independence (unigram) would be a silly choice for ASR, MT
 - Need to handle subtle form of the string (is output grammatical?)
 - In IR we are already dealing with well-formed strings
 - Pointless to waste probability mass on grammatical
 - BIR doesn't really assume independence
 - Necessary condition significantly weaker than independence
BIR doesn't assume independence

\[P_{\text{BIR}}(d) = \prod_{w} P(d, w) = \prod_{w} \frac{P(d, w)}{P(d)} \cdot \frac{k(w)}{k(w)} \]

- *Independence* will not affect ranking if all words w have the same dependence in relevant/relevant classes
- *1st order dependence* in the non-relevant class

Sufficient condition: proportional independence

the total amount of independence among all words in a document is approximately the same under R=1 and R=0

How to interpret independence

- **(conditional) Independence:**
 - seeing "Obama" doesn't affect chances of seeing "Romney"
 - holds for R=1 and R=0 (probabilities can be different)
- **Linked Dependence:**
 - seeing "Obama" increases chances of seeing "Romney"
 - by the same amount under R=1 and R=0
 - reasonable, unless topic is 2012 elections
- **Proportional Interdependence:**
 - seeing "Obama" increases chances of seeing "Romney"
 - can be more so-depended in the relevant class
 - as long as offset by other word sets under R=0
 - e.g., "world" and "top" more co-dependent in non-relevant class

Sufficient condition: proportional interdependence

Two-Poisson model [Harter]

- Idea: words generated by a mixture of two Poissons
 - "elite" words for a document: occur unusually frequently
 - "non-elite" words - occur as expected by chance
- document is a mixture: \[P(d,w) = \alpha P_{\text{elite}}(w) + (1-\alpha) P_{\text{non-elite}}(w) \]
- estimate \(\alpha \) by fitting to data (max. likelihood)

Two-Poisson model [Harter]

- Problem: need probabilities conditioned on relevance
 - "eliteness" not the same as relevance
 - Robertson and Sparck Jones: condition eliteness on R=0, R=1
 - final form has too many parameters, and no data to fit them...

- **BM25:** an "approximation" to conditioned 2-Poisson

BM25: an intuitive view

Example: BM25

- documents: \(D_1 = \{a b c d, 2\}, D_2 = \{b e f d, 2\}, D_3 = \{b g c d, 3\}, D_4 = \{b g h h, 3\} \)
- query: Q = \"a c h\"; assume k = 1, b = 0.5

Summary: probabilistic model

- **Probability Ranking Principle**
 - ranking by \(P(R=1|D) \) is optimal
- **Classical probabilistic model**
 - words: binary events (relaxed in the 2-Poisson model)
 - words assumed independent (not accurate)
 - numerous attempts to model dependence, most without success
- **Formal, interpretable model**
 - explicit, elegant model of relevance (if observable)
 - very problematic if relevance not observable
 - authors resort to heuristics, devised BM25