Text Technologies

Machine Learning in IR
Victor Lavrenko

Text Classification
- Predict category / label for a string of text:
 - Is this an email spam or not?
 - Will this be a Sina Weibo post be censored?
 - Does this blogger like or hate our product?
 - Will the Apple stock rise or fall after this news story?
- Have +/− training examples, predict label for new test d
- Centroid (Rocchio) classifier:
 - text d = vector over terms
 - Compute centroids: \(c_+, c_− \)
 - If \(d \cdot c_+ > d \cdot c_− \), predict label is positive
 - Decision rule: \(d \cdot c_+ - d \cdot c_− > 0 \)
 - Or: \(d \cdot w > 0 \) where \(w = c_− - c_+ \)

Large Margin Classifiers
- Learn a decision boundary \(w^t \cdot d > 0 \) iff d is positive
- Problem: many such w (assuming examples separable)
- Maximum-margin: "buffer zone" around boundary
 - As far as possible from nearest training examples: \(d^t w > 0 (+) \)
- Support Vector Machine (SVM)
 - Best classification accuracy
 - Can be slow to train (use SMO/QP)
- Passive Aggressive (PA)
 - Test to train, streaming
 - Accuracy can be lower
- What works in practice:
 - Don't use non-linear versions
 - Don't do feature selection / LSI
 - Use if idf weighting, normalize: \(||w||=1 \)

Support Vector Machine
- Find boundary vector \(w \) that satisfies conditions:
 \[\sum_{i=1}^{m} x_i y_i w_i = 1 \text{ (positive)} \]
 \[\sum_{i=1}^{m} x_i y_i w_i = 1 \text{ (negative)} \]
- Maximize margin around \(w \)
- Convex hull: polytope around all positives/negatives
 - Any \(p = \sum a_i x_i \) is a linear combination of some \(x_i \)
 - Find two nearest points \(h^+, h^− \)
 - Margin must be \(\min \{ ||h^− - h^+|| \} \)
 - Boundary must be halfway
 - Perp to: \(a = \sum a_i x_i \)
 - Looked for nearest points:
 \[\min ||h^− - h^+|| = \min ||w|| \]

Passive Aggressive Algorithm
- On-line algorithm: learn from massive streams of data
 - Get an example, update classifier, throw away example
- SMO algorithm (simplified)
 \[\min \|h\|^2 = \min \left\{ \sum a_i x_i - \sum d_i \right\} = \min \left\{ \sum a_i x_i \right\} \]
 \[\text{subject to } a_i = 0, a_i \geq 0 \]
- Sequential Minimal Optimization (SMO/PR):
 - Initialize \(a_i = 0 \)
 - Repeat until convergence:
 - (1) Pick two weights, e.g. \(a_i, a_j \)
 - Feasible to find most promising pair
 - (2) Compute new \(a_i, a_j \)
 - Loop until no fixed
 - Fixed point solution (basal)