What you will learn

• How to build a search engine
 – which search results to rank at the top
 – how to do it fast and on a massive scale
• How to evaluate a search algorithm
 – is system A really better than system B
• How to work with text
 – two tweets talk about the same topic?
 – handle misspellings, morphology, synonyms
 – build algorithms for languages you don’t know

Overview

• Information Retrieval
 – Two main issues in IR: speed and accuracy
 – Documents, queries, relevance
 – Bag-of-words trick
• Overview of Search System Architectures
• Other IR tasks
• Course logistics

Information Retrieval (IR)

“Information retrieval is a field concerned with the structure, analysis, organization, storage, searching, and retrieval of information.”
(Salton, 1968)

• IR – core technology for text processing
• widely used in NLP/DBMS applications
• driving force behind web technologies

IR in a nutshell

Two main issues in IR

• Effectiveness
 – need to find relevant documents
 – needle in a haystack:
 – very different from relational DBs (SQL)
• Efficiency
 – need to find them quickly:
 – vast quantities of data (100b pages)
 – thousands queries per second
 – data constantly changes, need to keep up
 – compared with other NLP areas IR is very fast

Documents

• “documents” has a very wide meaning:
• "documents" has a very wide meaning:
 – web-pages, emails, word/pdf/excel, news
 – photos, videos, musical pieces, code
 – answers to questions
 – product descriptions, advertisements
 – may be in a different language
 – may not have words at all (e.g. DNA)
• IR: match A against a large set of Bs
 – problem arises in many different domains

8 Queries
• web search:
 – query = a few keywords ("homer simpson")
• query = expression of information need
 – describes what you want to find
 – can have many forms:
 • keywords, narrative, example “document”
 • question, photo, scribble, humming a tune
 • \#wsum(0.9 \#field (title, \#phrase (homer,simpson))
 0.7 \#and (\#> (pagerank,3), \#owl (homer,simpson))
 0.4 \#passage (homer, simpson, dan, castellaneta))

9 Relevance
• at an abstract level, IR is about:
 does item D match item Q? …or…
 is item D relevant to item Q?
• relevance a tricky notion
 – will the user like it / click on it?
 – will it help the user achieve a task?
 – is it novel (not redundant)?
• common take: relevance = topicality / aboutness
 – i.e. D,Q share similar “meaning”
 – about the same topic / subject / issue

10 Why is matching a challenge?
• no clear semantics, contrast:
 – author = X123456 ("Shakespeare, William") vs.
 – "play, frequently attributed to Shakespeare, is in fact"
• inherent ambiguity of language:
 – synonymy: “banking crisis” = “financial meltdown”
 – polysemy: “Homer” can be “Simpson” or “Greek author”
• relevance highly subjective
 – Anomalous State of Knowledge (Belkin)
• relevance not observable (when we need it)
• on the web: counter SEOs / spam

11 How do search engines do it?
• not with relational DBs
 – ok in niche domains (libraries)
 – “tagging” works for multi-media
 • spammers, loses “clarity” with scale
 – “semantic web” \(\Rightarrow \) inconsistent ontologies
• not by “understanding” the language
 – NLP brittle in unrestricted domains
 • good w. fixed structure/vocabulary (e.g. takeovers)
 – computationally expensive

12 Relevant Items are Similar
• Key idea:
 – use similar vocabulary \(\Rightarrow \) similar meaning
 – similar documents relevant to same queries
• Similarity
 – string match
 – word overlap
 – P (same model)

13 Bag-of-words trick
• Can you guess what this is about:
 – beating falls 355 Dow another takes points
 – said fat fries McDonalds French obesity
• Re-ordering doesn’t destroy meaning
 – individual words – “building blocks”
 – “bag” of words: a “composition” of “meanings”

14 Bag-of-words trick (2)
• Most search engines use BOW
 – treat documents, queries as bags of words
 • a “bag” is a set with repetitions (multi-set, urn)
 – match = “degree of overlap” between \(D, Q \)
• Retrieval models
 – statistical models that use words as features
 – decide which docs most likely to be relevant
 • what should be the top 10 for “homer simpson”?
 – BOW makes these models tractable

15 Bag-of-words: criticisms
• word meaning lost without context
 – true, but BOW doesn’t really discard context
 • it discards surface form / well-formedness of text
• what about negations, etc.?
• “not, but he loves me” vs. “but he loves me not”
 • still discusses the same subject (him, me, love)
 • propagate negations to words: “but he not_loves me”
• does not work for all languages
 – no natural “word” unit in Chinese, images, music
 – circumvent by “segmentation” or “feature induction”
 • break/aggregate until units reflect “aboutness”

16 Systems perspective on IR
• get the data into the system
 – acquire the data from crawling, feeds, etc.
 – store the originals (if needed)
 – transform to BOW and “index”
• satisfy users’ requests
 – assist user in formulating query
 – retrieve a set of results
 – help user browse / re-formulate
 – log user’s actions, adjust retrieval model

17 Indexing Process
18 Search Process