Lecture Objectives

- **Learn** about how to evaluate IR
 - Evaluation measures
 - P, R, F
 - MAP
 - nDCG

- **Implement**:
 - P, R
 - MAP
 - nDCG
IR as an Experimental Science!

- Formulate a research question: the hypothesis
- Design an experiment to answer the question
- Perform the experiment
 - Compare with a baseline “control”
- Does the experiment answer the question?
 - Are the results significant? Or is it just luck?
- Report the results!
- Iterate …
 - e.g. stemming improves results?

Configure your system

- About the system:
 - Stopping? Tokenise? Stemming? n-gram char?
 - Use synonyms improve retrieval performance?
- Corresponding experiment?
 - Run your search for a set of queries with each setup and find which one will achieve the best performance
- About the user:
 - Is letting users weight search terms a good idea?
- Corresponding experiment?
 - Build two different interfaces, one with term weighting functionality, and one without; run a user study
Types of Evaluation Strategies

• System-centered studies:
 • Given documents, queries, and relevance judgments
 • Try several variations of the system
 • Measure which system returns the “best” hit list
 • Laboratory experiment

• User-centered studies
 • Given several users, and at least two retrieval systems
 • Have each user try the same task on both systems
 • Measure which system works the “best”

Importance of Evaluation

• The ability to measure differences underlies experimental science
 • How well do our systems work?
 • Is A better than B?
 • Is it really?
 • Under what conditions?

• Evaluation drives what to research
 • Identify techniques that work and don't work
The 3-dimensions of Evaluation

• Effectiveness
 • How “good” are the documents that are returned?
 • System only, human + system

• Efficiency
 • Retrieval time, indexing time, index size

• Usability
 • Learnability, flexibility
 • Novice vs. expert users

Cranfield Paradigm (Lab setting)
Reusable IR Test Collection

- Collection of Documents
 - Should be “representative” to a given IR task
 - Things to consider: size, sources, genre, topics, ...

- Sample of information need
 - Should be “randomized” and “representative”
 - Usually formalized topic statements (query + description)

- Known relevance judgments
 - Assessed by humans, for each topic-document pair
 - Binary/Graded

- Evaluation measure

Good Effectiveness Measures

- Should capture some aspect of what the user wants
 - IR → Do the results satisfy user's information need?

- Should be easily replicated by other researchers

- Should be easily comparable
 - Optimally, expressed as a single number
 - Curves and multiple numbers are still accepted, but single numbers are much easier for comparison

- Should have predictive value for other situations
 - What happens with different queries on a different document collection?
Set Based Measures

• Assuming IR system returns sets of retrieved results without ranking
• Suitable with Boolean Search
• No certain number of results per query

Which looks the best IR system?

• For query Q, collection has 8 relevant documents:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>
Precision and Recall

- **Precision**: What fraction of these retrieved docs are relevant?
 \[P = \frac{rel \cap ret}{retrieved} = \frac{TP}{TP + FP} \]

- **Recall**: What fraction of the relevant docs were retrieved?
 \[R = \frac{rel \cap ret}{relevant} = \frac{TP}{TP + FN} \]
Trade-off between P & R

- Precision: The ability to retrieve top-ranked docs that are mostly relevant.
- Recall: The ability of the search to find all of the relevant items in the corpus.
- Retrieve more docs:
 - Higher chance to find all relevant docs $\rightarrow R \uparrow \uparrow$
 - Higher chance to find more irrelevant docs $\rightarrow P \downarrow \downarrow$

Trade-off between P & R

![Diagram showing the trade-off between Precision and Recall]

- Returns relevant documents but misses many useful ones too
- The ideal
- Returns most relevant documents but includes lots of junk

Walid Magdy, TTDS 2018/2019
What about Accuracy?

- **Accuracy**: What fraction of docs was classified correctly?
 \[A = \frac{TP + TN}{TP + FP + TN + FN} \]

irrelevant >>>>> relevant
(needle in a haystack)

One Measure? F-measure

- Harmonic mean of recall and precision
 - Emphasizes the importance of small values, whereas the arithmetic mean is affected more by outliers that are unusually large

- Beta (\(\beta\)) controls relative importance of \(P\) and \(R\)
 - \(\beta = 1\), precision and recall equally important \(\rightarrow F1\)
 - \(\beta = 5\), recall five times more important than precision
Rank-based IR measures

- Consider systems A & B
 - Both retrieved 10 docs, only 5 are relevant
 - P, R & F are the same for both systems
 - Should their performances considered equal?
- Ranked IR requires taking “ranks” into consideration!
- How to do that?

Which is the best ranked list?

- For query Q, collection has 8 relevant documents:

<table>
<thead>
<tr>
<th>Rank</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>12</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
</tbody>
</table>
Precision @ K

- \(k \) (a fixed number of documents)
- Have a cut-off on the ranked list at rank \(k \), then calculate precision!
- Perhaps appropriate for most of web search: most people only check the top \(k \) results
- But: averages badly, Why?

P@5

- For query \(Q \), collection has 8 relevant documents:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

R-Precision

- For a query with known \(r \) relevant documents \(\rightarrow \) R-precision is the precision at rank \(r \) (P@\(r \))
- \(r \) is different from one query to another
- Concept:
 It examines the ideal case: getting all relevant documents in the top ranks
- Is it realistic?

R-Precision

- For query \(Q \), collection has 8 relevant documents:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>
User Satisfaction??

- It is assumed that users need to find relevant docs at the highest possible ranks → Precision is a good measure
- But, users would cut-off (stop inspecting results) at some point, say rank x → P@x
- What is the optimal x? When you think a user can stop?

When a user can stop?

- IR objective: “satisfy user information need”
- Assumption: a user will stop once his/her information need is satisfied
- How? user will keep looking for relevant docs in the ranked list, read them, then stop once he/she feels satisfied
- P@x → x can be any rank where a relevant document appeared (assume uniform distribution)
- What about calculating the averages over all x’s?
 - every time you find relevant doc, calculate P@x, then take the average at the end
Average Precision (AP)

Q₁ (has 4 rel. docs)

- 1 → R 1/1 = 1.00
- 2 → R 2/2 = 1.00
- 3 →
- 4 →
- 5 → R 3/5 = 0.60
- 6 →
- 7 →
- 8 →
- 9 → R 4/9 = 0.44
- 10 →

Q₂ (has 3 rel. docs)

- 1 → R 1/3 = 0.33
- 2 →
- 3 →
- 4 →
- 5 →
- 6 →
- 7 → R 2/7 = 0.29
- 8 →
- 9 →
- 10 →

Q₃ (has 7 rel. docs)

- 1 → R 1/2 = 0.50
- 2 →
- 3 →
- 4 →
- 5 → R 2/5 = 0.40
- 6 →
- 7 → R 3/8 = 0.375
- 8 →
- 9 →
- 10 →

\[AP = \frac{3.04}{4} = 0.76\]
\[AP = \frac{0.62}{3} = 0.207\]
\[AP = \frac{1.275}{7} = 0.182\]

Mean Average Precision (MAP)

Q₁ (has 4 rel. docs)

- 1 → R 1/1 = 1.00
- 2 → R 2/2 = 1.00
- 3 →
- 4 →
- 5 → R 3/5 = 0.60
- 6 →
- 7 →
- 8 →
- 9 → R 4/9 = 0.44
- 10 →

\[AP = 0.76\]

Q₂ (has 3 rel. docs)

- 1 → R 1/3 = 0.33
- 2 →
- 3 →
- 4 →
- 5 →
- 6 →
- 7 → R 2/7 = 0.29
- 8 →
- 9 →
- 10 →

\[AP = 0.207\]

Q₃ (has 7 rel. docs)

- 1 → R 1/2 = 0.50
- 2 →
- 3 →
- 4 →
- 5 → R 2/5 = 0.40
- 6 →
- 7 → R 3/8 = 0.375
- 8 →
- 9 →
- 10 →

\[AP = 0.182\]

\[MAP = (0.76 + 0.207 + 0.182)/3 = 0.383\]
AP & MAP

\[AP = \frac{1}{r} \sum_{k=1}^{n} P(k) \times rel(k) \]

where, \(r \): number of relevant docs for a given query
\(n \): number of documents retrieved
\(P(k) \): precision @ \(k \)
\(rel(k) \): 1 if retrieved doc @ \(k \) is relevant, 0 otherwise.

\[MAP = \frac{1}{Q} \sum_{q=1}^{Q} AP(q) \]

where, \(Q \): number of queries in the test collection

AP/MAP

\[AP = \frac{1}{r} \sum_{k=1}^{n} P(k) \times rel(k) \]

- A mix between precision and recall
- Highly focus on finding relevant document as early as possible
- When \(r \)=1 \(\rightarrow \) MAP = MRR (mean reciprocal rank \(\frac{1}{k} \))
- MAP is the most commonly used evaluation metric for most IR search tasks
- Uses binary relevance: rel = 0/1
MAP

- For query Q, collection has **8 relevant documents**:

<table>
<thead>
<tr>
<th>System</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.500</td>
<td>0.625</td>
<td>0.556</td>
<td>0.424</td>
</tr>
<tr>
<td>B</td>
<td>0.500</td>
<td>0.750</td>
<td>0.600</td>
<td>0.290</td>
</tr>
<tr>
<td>C</td>
<td>0.417</td>
<td>0.625</td>
<td>0.500</td>
<td>0.433</td>
</tr>
<tr>
<td>D</td>
<td>0.333</td>
<td>0.500</td>
<td>0.400</td>
<td>0.475</td>
</tr>
<tr>
<td>E</td>
<td>0.375</td>
<td>0.375</td>
<td>0.375</td>
<td>0.262</td>
</tr>
<tr>
<td>F</td>
<td>0.500</td>
<td>0.750</td>
<td>0.600</td>
<td>0.420</td>
</tr>
<tr>
<td>G</td>
<td>0.800</td>
<td>0.500</td>
<td>0.615</td>
<td>0.340</td>
</tr>
</tbody>
</table>

Binary vs. Graded Relevance

- Some docs are more relevant to a query than other relevant ones!
 - We need non-binary relevance

- Binary Relevance:
 - Relevant 1
 - Irrelevant 0

- Graded Relevance:
 - Perfect 4
 - Excellent 3
 - Good 2
 - Fair 1
 - Bad 0
Binary vs. Graded Relevance

- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant
 - The lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined

- Discounted Cumulative Gain (DCG)
 - Uses graded relevance as a measure of the usefulness
 - The most popular for evaluating web search

Discounted Cumulative Gain (DCG)

- Gain is accumulated starting at the top of the ranking and may be reduced (discounted) at lower ranks
- Users care more about high-ranked documents, so we discount results by \(\frac{1}{\log_2(\text{rank})}\)
 - the discount at rank 4 is 1/2, and at rank 8 is 1/3
- \(\text{DCG}_k\) is the total gain accumulated at a particular rank \(k\) (sum of DG up to rank \(k\)):

\[
\text{DCG}_k = \text{rel}_1 + \sum_{i=2}^{k} \frac{\text{rel}_i}{\log_2(i)}
\]
Normalized DCG (nDCG)

- DCG numbers are averaged across a set of queries at specific rank values (DCG@k)
 - e.g., DCG at rank 5 is 6.89 and at rank 10 is 9.61
 - Can be any positive real number!
- DCG values are often normalized by comparing the DCG at each rank with the DCG value for the perfect ranking
 - makes averaging easier for queries with different numbers of relevant documents
- nDCG@$k = \frac{DCG@k}{iDCG@k}$ (divide actual by ideal)
- nDCG ≤ 1 at any rank position
- To compare DCGs, normalize values so that an ideal ranking would have a normalized DCG of 1.0

<table>
<thead>
<tr>
<th>k</th>
<th>G</th>
<th>DG</th>
<th>DCG@k</th>
<th>iG</th>
<th>iDG</th>
<th>iDCG@k</th>
<th>nDCG@k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3.00</td>
<td>3</td>
<td>3.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.5</td>
<td>3.00</td>
<td>6</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1.89</td>
<td>1.89</td>
<td>7.89</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>6.89</td>
<td>2.00</td>
<td>8.89</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>6.89</td>
<td>2.00</td>
<td>9.75</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.39</td>
<td>0.77</td>
<td>10.52</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0.71</td>
<td>0.36</td>
<td>10.88</td>
<td>0.73</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0.67</td>
<td>0.00</td>
<td>10.88</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>0.95</td>
<td>0.00</td>
<td>10.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.96</td>
<td>0.00</td>
<td>10.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Summary:

- IR test collection:
 - Document collection
 - Query set
 - Relevant judgements
 - IR measures
- IR measures:
 - R, P, F → not commonly used
 - P@k, R-precision → used sometimes
 - MAP → the most used IR measure
 - nDGC → the most used measure for web search

Resources

- Text book 1: Intro to IR, Chapter 8
- Text book 2: IR in Practice, Chapter 8