Learning to Rank

Instructor: Walid Magdy

Lecture Objectives

• Learn about:
 • IR as a classification task
 • Learning to Rank approaches
Classical Models vs. ML in IR

• Classical Models:
 • Features (factors): only a few, e.g., TF, IDF, |D|, P(t|corpus) etc.
 • Structure: optimized for the a few particular features
 • Parameter & training
 • Often 1-2; not every factor has a parameter controlling its influence
 • Hand-tuning or data-based; can exhaustive since just 1-2 parameters
 • tfidf or BM25 or LMIR? PRF? What n_d, n_t?

• ML in IR
 • Features: can include up to hundreds, thousands, or even more
 • Define the basic structure of a model
 • Quite generic: such as a weighted linear combination of all features
 • Parameters & training
 • Many; control the influence of each feature and their combinations
 • Impossible to tune by hand; Must be data-driven
 • Let the ML decide what is better!

Text Classification in IR

• Text Classification:
 • Classify a document into one of two or more classes
 • Different features could be used, e.g. BOW

• Can we model IR as classification?
 • Classify document to C1: R or C2: NR
 • Challenges?
 • Training data?
 • Features? BOW?

• BOW features cannot work
 • Spam? Viagra, @ed.ac.uk
 • Sentiment? happy, sad
 • Relevant? Trump, hurricane
 • Relevance is a query-dependent class
Getting Classification to IR

- Transforming features
 - Text classification: Input (D) → output (yes/no)
 - Information Filtering: Input (D|Q) → output (yes/no)

- Features set:
 - Independent of absolute words
 - More on relation between doc and query
 - Mostly are numbers (formulas, frequencies, …)
 - Consistent as much as possible among different Q,D pairs
 - e.g.:
 - TFIDF, BM25
 - Query in page title? Heading?
 - Query in anchor text linking pages
 - PageRank of doc
 - Number of times page clicked for the same query

Popular Features

<table>
<thead>
<tr>
<th>Column in Output</th>
<th>Description</th>
<th>Column in Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TF(Term frequency) of body</td>
<td>24</td>
<td>LMR.IJM of body</td>
</tr>
<tr>
<td>2</td>
<td>TF of anchor</td>
<td>25</td>
<td>BM25 of anchor</td>
</tr>
<tr>
<td>3</td>
<td>TF of title</td>
<td>26</td>
<td>LMR.ABS of anchor</td>
</tr>
<tr>
<td>4</td>
<td>TF of URL</td>
<td>27</td>
<td>LMR.DIR of anchor</td>
</tr>
<tr>
<td>5</td>
<td>TF of whole document</td>
<td>28</td>
<td>LMR.IJM of anchor</td>
</tr>
<tr>
<td>6</td>
<td>IDF(Inverse document frequency) of body</td>
<td>29</td>
<td>BM25 of title</td>
</tr>
<tr>
<td>7</td>
<td>IDF of anchor</td>
<td>30</td>
<td>LMR.ABS of title</td>
</tr>
<tr>
<td>8</td>
<td>IDF of title</td>
<td>31</td>
<td>LMR.DIR of title</td>
</tr>
<tr>
<td>9</td>
<td>IDF of URL</td>
<td>32</td>
<td>LMR.JM of title</td>
</tr>
<tr>
<td>10</td>
<td>IDF of whole document</td>
<td>33</td>
<td>BM25 of URL</td>
</tr>
<tr>
<td>11</td>
<td>TF*IDF of body</td>
<td>34</td>
<td>LMR.ABS of URL</td>
</tr>
<tr>
<td>12</td>
<td>TF*IDF of anchor</td>
<td>35</td>
<td>LMR.DIR of URL</td>
</tr>
<tr>
<td>13</td>
<td>TF*IDF of title</td>
<td>36</td>
<td>LMR.JM of URL</td>
</tr>
<tr>
<td>14</td>
<td>TF*IDF of URL</td>
<td>37</td>
<td>BM25 of whole document</td>
</tr>
<tr>
<td>15</td>
<td>TF*IDF of whole document</td>
<td>38</td>
<td>LMR.ABS of whole document</td>
</tr>
<tr>
<td>16</td>
<td>DL(Document length) of body</td>
<td>39</td>
<td>LMR.DIR of whole document</td>
</tr>
<tr>
<td>17</td>
<td>DL of anchor</td>
<td>40</td>
<td>LMR.JM of whole document</td>
</tr>
<tr>
<td>18</td>
<td>DL of title</td>
<td>41</td>
<td>PageRank</td>
</tr>
<tr>
<td>19</td>
<td>DL of URL</td>
<td>42</td>
<td>Inlink number</td>
</tr>
<tr>
<td>20</td>
<td>DL of whole document</td>
<td>43</td>
<td>Outlink number</td>
</tr>
<tr>
<td>21</td>
<td>BM25 of body</td>
<td>44</td>
<td>Number of slash in URL</td>
</tr>
<tr>
<td>22</td>
<td>LMR.ABS of body</td>
<td>45</td>
<td>Length of URL</td>
</tr>
<tr>
<td>23</td>
<td>LMR.DIR of body</td>
<td>46</td>
<td>Number of child page</td>
</tr>
</tbody>
</table>
Training Data

- Training data: \{R,X\}
 - X: feature representation of (D,Q) pairs
 - R = \{-1, +1\} … is D relevant to Q or no

- Samples:
 - Large set of (D,Q) pairs
 - Wide range of Q’s (long/short, frequent/rare, …)
 - Wide range of D’s for each Q (top/deep ranked, recent/old pages, …)

- Labels:
 - Manually labelled: assessors judge relevance of docs to queries (similar to standard IR)
 - Automatically labelled: click-through data

Classification or Ranking?

- Click-through data
 - User clicks can give indication of relevance
 - What about non-relevance?
 - A list of ranked results: D1 → D2 → D3
 - user clicked on D3 and neglected D1 & D2
 - what does it mean?
 - D3 is relevant and D1 & D2 are not relevant?
 - Relevance: D3 > D1 & D2?

- It might be better to model the problem as ranking
 - Label → Ranking preference (e.g. gain={4,3,2,1,0})
 - Learning → to optimize Doc_X > Doc_Y
 - not to classify them to R/NR
 - Input: features for set of docs for a given query
 - Objective: rank them (sort by relevance)
ML & IR: History

- Considerable interaction between these fields
 - Rocchio algorithm (60s) is a simple learning approach
 - 80s, 90s: learning ranking algorithms based on user feedback
 - 2000s: text categorization
- Limited by amount of training data
- Web query logs have generated new wave of research
 - L2R: “Learning to Rank”

What is Learning-to-Rank?

- Purpose
 - Learn a function automatically to rank results effectively
- Point-wise approach
 - Classify document to R / NR
- List-wise
 - The function is based on a ranked list of items
 - given two ranked list of the same items, which is better
- Pair-wise
 - The function is based on a pair of item
 - e.g., given two documents, predict partial ranking
Point-wise Approaches
• The function is based on features of a single object
 • e.g., regress the rel. score, classify docs into R and NR
• Very similar to classification
 • Examples of (D,Q) pairs with labels 1 or 0
• Classic retrieval models are also point-wise:
 • Calculate score(Q, D)
 • If score(Q,D) > \(\theta \) → relevant
 • else, irrelevant
• Referred to as information filtering
 • Standing query + new documents coming
 • Decide weather a new document is R on NR

List-based Approaches
• Need a loss function on a list of documents
• Challenge is scale
 • Huge number of potential lists
• Can develop tricks
 • Consider only possible re-rankings of top N retrieved by some fixed method
• Still expensive
 • No clear benefits over pairwise ones (so far)
Pair-wise Approaches

- Trying to classify
 - Which document of two should be ranked at a higher position?
- Optimize based on:
 - Margin between decision hyperplane and instances
 - Errors
 - Weighted based on some hyper-parameter C
 - Evaluation metric
- Example: Ranking SVM
 - A generalization of SVM that supports ranking
 [Herbrich et al. 1999, 2000; Joachims et al. 2002]

- The most popular approach
- Learning method: Ranking SVM, RankBoost, GBRank, Ranknet, LambdaRank, LambdaMART
- Several issues of ranking SVM
 - Still, it does not directly optimize an evaluation metric
 - But pairwise ranking error often better correlations with evaluation metrics than the loss/objective functions in point-wise approaches
 - Why: evaluation measures only care about rankings!
 - e.g., ground-truth: rel(D1) = 2, rel(D2) = 1
 - Regression model 1: pred.rel(D1) = 2, pred.rel(D2) = 3
 - Regression model 2: pred.rel(D1) = 1, pred.rel(D2) = 0
 - Model 1 is better than model 2 by criterion of evaluation regression (the prediction error), but model 2 yields a correct ranking of docs
Pair-wise Approaches

• LambdaMART:
 • Misordered pairs are not equally important
 • Depends on how much they contribute to the changes in the target evaluation measure

Pair-wise Approaches

• Optimizing for an evaluation metric
 • The general idea is to weight loss/objective function or gradient with pairwise changes in evaluation measure.
 • e.g., in LambdaMART: lambda gradient

• Can we optimize all measures?
 • Not necessarily
 • For some measures, pairwise change do not only relate to the two documents themselves, but also others …
 • Position-based measures do not have the issues (pairwise change only depends on the two documents)
 • Cascade measures may have issues
Pair-wise Approaches: Example

- Experiments
 - 1.2k queries, 45.5K documents with 1890 features
 - 800 queries for training, 400 queries for testing

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>MAP</th>
<th>P@1</th>
<th>ERR</th>
<th>MRR</th>
<th>NDCG@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ListNET</td>
<td>0.2863</td>
<td>0.2074</td>
<td>0.1661</td>
<td>0.3714</td>
<td>0.2949</td>
</tr>
<tr>
<td>LambdaMART</td>
<td>0.4644</td>
<td>0.4630</td>
<td>0.2654</td>
<td>0.6105</td>
<td>0.5236</td>
</tr>
<tr>
<td>RankNET</td>
<td>0.3005</td>
<td>0.2222</td>
<td>0.1873</td>
<td>0.3816</td>
<td>0.3386</td>
</tr>
<tr>
<td>RankBoost</td>
<td>0.4548</td>
<td>0.4370</td>
<td>0.2463</td>
<td>0.5829</td>
<td>0.4866</td>
</tr>
<tr>
<td>RankingSVM</td>
<td>0.3507</td>
<td>0.2370</td>
<td>0.1895</td>
<td>0.4154</td>
<td>0.3585</td>
</tr>
<tr>
<td>AdaRank</td>
<td>0.4321</td>
<td>0.4111</td>
<td>0.2307</td>
<td>0.5482</td>
<td>0.4421</td>
</tr>
<tr>
<td>pLogistic</td>
<td>0.4519</td>
<td>0.3926</td>
<td>0.2489</td>
<td>0.5535</td>
<td>0.4945</td>
</tr>
<tr>
<td>Logistic</td>
<td>0.4348</td>
<td>0.3778</td>
<td>0.2410</td>
<td>0.5526</td>
<td>0.4762</td>
</tr>
</tbody>
</table>

Honglin Wang Slides

L2R in Practice

First step
- Base Ranker
- Document Index
- N docs

Second step
- Top Ranker
- Features
- Learning to Rank Algorithm
- K docs

Results Page(s)
- 1
- 2
- 3
- ... K

Capannini, G., et al.
Quality versus efficiency in document scoring with learning-to-rank models.
IP&M 2016.
Summary

- IR as a classification task
- Learning to rank (L2R) approaches
 - Point-wise
 - Information Filtering
 - List-wise
 - Pair-wise
 - Ranking SVM
 - LambdaMART
- L2R could be applied to other applications
 - Rank emails by importance
Resources

- SVMRank: \url{http://svmlight.joachims.org/}

- L2R test sets:
 - Microsoft's LETOR project \url{http://research.microsoft.com/en-us/um/beijing/projects/letor/default.aspx}
 - Microsoft L2R datasets \url{http://research.microsoft.com/en-us/projects/mslr/default.aspx}