Instructor: Walid Magdy

Pre-Lecture

- Only one lecture today
- Last Lecture in the course
 - Optional tutorial two lectures in S2 on Solr
- No lab
- After the lecture: Info on Group project!!!
Lecture Objectives

• Learn about:
 • IR as a classification task
 • Learning to Rank approaches

Classical Models vs. ML in IR

• Classical Models:
 • Features (factors): only a few, e.g., TF, IDF, \(|D|\), \(P(t|\text{corpus})\) etc.
 • Structure: optimized for the a few particular features
 • Parameter & training
 • Often 1-2; not every factor has a parameter controlling its influence
 • Hand-tuning or data-based; can exhaustive since just 1-2 parameters
 • \(tfidf\) or BM25 or LMR? PRF? What \(n_o\), \(n_t\)?

• ML in IR
 • Features: can include up to hundreds, thousands, or even more
 • Define the basic structure of a model
 • Quite generic: such as a weighted linear combination of all features
 • Parameters & training
 • Many; control the influence of each feature and their combinations
 • Impossible to tune by hand; Must be data-driven
 • Let the ML decide what is better!
Text Classification in IR

- Text Classification:
 - Classify a document into one of two or more classes
 - Different features could be used, e.g. BOW

- Can we model IR as classification?
 - Classify document to C1: R or C2: NR
 - Challenges?
 - Training data?
 - Features? BOW?

- BOW features cannot work
 - Spam? Viagra, @ed.ac.uk
 - Sentiment? happy, sad
 - Relevant? Trump, hurricane
 - Relevance is a query-dependent class

Getting Classification to IR

- Transforming features
 - Text classification: Input (D) → output (yes/no)
 - Information Filtering: Input (D|Q) → output (yes/no)

- Features set:
 - Independent of absolute words
 - More on relation between doc and query
 - Mostly are numbers (formulas, frequencies, …)
 - Consistent as much as possible among different Q,D pairs
 - e.g.:
 - TFIDF, BM25
 - Query in page title? Heading?
 - Query in anchor text linking pages
 - PageRank of doc
 - Number of times page clicked for the same query
Popular Features

<table>
<thead>
<tr>
<th>Column in Output</th>
<th>Description</th>
<th>Column in Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TF (Term frequency) of body</td>
<td>24</td>
<td>LMR.JM of body</td>
</tr>
<tr>
<td>2</td>
<td>TF of anchor</td>
<td>25</td>
<td>BM25 of anchor</td>
</tr>
<tr>
<td>3</td>
<td>TF of title</td>
<td>26</td>
<td>LMR.ABS of anchor</td>
</tr>
<tr>
<td>4</td>
<td>TF of URL</td>
<td>27</td>
<td>LMR.DIR of anchor</td>
</tr>
<tr>
<td>5</td>
<td>TF of whole document</td>
<td>28</td>
<td>LMR.JM of anchor</td>
</tr>
<tr>
<td>6</td>
<td>IDI (Inverse document frequency) of body</td>
<td>29</td>
<td>BM25 of title</td>
</tr>
<tr>
<td>7</td>
<td>IDF of anchor</td>
<td>30</td>
<td>LMR.ABS of title</td>
</tr>
<tr>
<td>8</td>
<td>IDF of title</td>
<td>31</td>
<td>LMR.DIR of title</td>
</tr>
<tr>
<td>9</td>
<td>IDF of URL</td>
<td>32</td>
<td>LMR.JM of title</td>
</tr>
<tr>
<td>10</td>
<td>IDF of whole document</td>
<td>33</td>
<td>BM25 of URL</td>
</tr>
<tr>
<td>11</td>
<td>TF.IDF of body</td>
<td>34</td>
<td>LMR.ABS of URL</td>
</tr>
<tr>
<td>12</td>
<td>TF.IDF of anchor</td>
<td>35</td>
<td>LMR.DIR of URL</td>
</tr>
<tr>
<td>13</td>
<td>TF.IDF of title</td>
<td>36</td>
<td>LMR.JM of URL</td>
</tr>
<tr>
<td>14</td>
<td>TF.IDF of URL</td>
<td>37</td>
<td>BM25 of whole document</td>
</tr>
<tr>
<td>15</td>
<td>TF.IDF of whole document</td>
<td>38</td>
<td>LMR.ABS of whole document</td>
</tr>
<tr>
<td>16</td>
<td>DL (Document length) of body</td>
<td>39</td>
<td>LMR.DIR of whole document</td>
</tr>
<tr>
<td>17</td>
<td>DL of anchor</td>
<td>40</td>
<td>LMR.JM of whole document</td>
</tr>
<tr>
<td>18</td>
<td>DL of title</td>
<td>41</td>
<td>PageRank</td>
</tr>
<tr>
<td>19</td>
<td>DL of URL</td>
<td>42</td>
<td>Inlink number</td>
</tr>
<tr>
<td>20</td>
<td>DL of whole document</td>
<td>43</td>
<td>Outlink number</td>
</tr>
<tr>
<td>21</td>
<td>BM25 of body</td>
<td>44</td>
<td>Number of slash in URL</td>
</tr>
<tr>
<td>22</td>
<td>LMR.ABS of body</td>
<td>45</td>
<td>Length of URL</td>
</tr>
<tr>
<td>23</td>
<td>LMR.DIR of body</td>
<td>46</td>
<td>Number of child page</td>
</tr>
</tbody>
</table>

Training Data

- Training data: \{R,X\}
 - X: feature representation of (D,Q) pairs
 - R = \{-1,+1\} ... is D relevant to Q or no

- Samples:
 - Large set of (D,Q) pairs
 - Wide range of Q's (long/short, frequent/rare, ...)
 - Wide range of D's for each Q (top/deep ranked, recent/old pages, ...)

- Labels:
 - Manually labelled: assessors judge relevance of docs to queries (similar to standard IR)
 - Automatically labelled: click-through data
Classification or Ranking?

• Click-through data
 • User clicks can give indication of relevance
 • What about non-relevance?
 • A list of ranked results: $D_1 \rightarrow D_2 \rightarrow D_3$
 user clicked on D_3 and neglected D_1 & D_2
 what does it mean?
 • D_3 is relevant and D_1 & D_2 are not relevant?
 • Relevance: $D_3 > D_1$ & D_2?

• It might be better to model the problem as ranking
 • Label \rightarrow Ranking preference (e.g. gain=$\{4,3,2,1,0\}$)
 • Learning \rightarrow to optimize $Doc_X > Doc_Y$
 not to classify them to R/NR
 • Input: features for set of docs for a given query
 Objective: rank them (sort by relevance)

ML & IR: History

• Considerable interaction between these fields
 • Rocchio algorithm (60s) is a simple learning approach
 • 80s, 90s: learning ranking algorithms based on user feedback
 • 2000s: text categorization

• Limited by amount of training data

• Web query logs have generated new wave of research
 • L2R: “Learning to Rank”
What is Learning-to-Rank?

• Purpose
 • Learn a function automatically to rank results effectively

• Point-wise approach
 • Classify document to R / NR

• List-wise
 • The function is based on a ranked list of items
 • given two ranked list of the same items, which is better

• Pair-wise
 • The function is based on a pair of item
 • e.g., given two documents, predict partial ranking

Point-wise Approaches

• The function is based on features of a single object
 • e.g., regress the rel. score, classify docs into R and NR

• Very similar to classification
 • Examples of (D,Q) pairs with labels 1 or 0

• Classic retrieval models are also point-wise:
 • Calculate score(Q, D)
 • \(\text{if } \text{score}(Q,D) > \theta \rightarrow \text{relevant} \)
 \(\text{else, irrelevant} \)

• Referred to as information filtering
 • Standing query + new documents coming
 • Decide whether a new document is R on NR
List-based Approaches

- Need a loss function on a list of documents
- Challenge is scale
 - Huge number of potential lists
- Can develop tricks
 - Consider only possible re-rankings of top N retrieved by some fixed method
- Still expensive
 - No clear benefits over pairwise ones (so far)

Pair-wise Approaches

- Trying to classify
 - Which document of two should be ranked at a higher position?
- Optimize based on:
 - Margin between decision hyperplane and instances
 - Errors
 - Weighted based on some hyper-parameter C
 - Evaluation metric
- Example: Ranking SVM
 - A generalization of SVM that supports ranking [Herbrich et al. 1999, 2000; Joachims et al. 2002]
Pair-wise Approaches

- The most popular approach
- Learning method: Ranking SVM, RankBoost, GBRank, Ranknet, LambdaRank, LambdaMART
- Several issues of ranking SVM
 - Still, it does not directly optimize an evaluation metric
 - But pairwise ranking error often better correlations with evaluation metrics than the loss/objective functions in point-wise approaches
 - Why: evaluation measures only care about rankings!
 - e.g., ground-truth: \(\text{rel}(D_1) = 2, \text{rel}(D_2) = 1 \)
 - Regression model 1: \(\text{pred.rel}(D_1) = 2, \text{pred.rel}(D_2) = 3 \)
 - Regression model 2: \(\text{pred.rel}(D_1) = 1, \text{pred.rel}(D_2) = 0 \)
 - Model 1 is better than model 2 by criterion of evaluation regression (the prediction error), but model 2 yields a correct ranking of docs

LambdaMART:
- Misordered pairs are not equally important
- Depends on how much they contribute to the changes in the target evaluation measure
Pair-wise Approaches

- Optimizing for an evaluation metric
 - The general idea is to weight loss/objective function or gradient with pairwise changes in evaluation measure.
 - e.g., in LambdaMART: lambda gradient

- Can we optimize all measures?
 - Not necessarily
 - For some measures, pairwise change do not only relate to the two documents themselves, but also others …
 - Position-based measures do not have the issues (pairwise change only depends on the two documents)
 - Cascade measures may have issues

Pair-wise Approaches: Example

- Experiments
 - 1.2k queries, 45.5K documents with 1890 features
 - 800 queries for training, 400 queries for testing

<table>
<thead>
<tr>
<th></th>
<th>MAP</th>
<th>P@1</th>
<th>ERR</th>
<th>MRR</th>
<th>NDCG@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ListNET</td>
<td>0.2863</td>
<td>0.2074</td>
<td>0.1661</td>
<td>0.3714</td>
<td>0.2949</td>
</tr>
<tr>
<td>LambdaMART</td>
<td>0.4644</td>
<td>0.4630</td>
<td>0.2654</td>
<td>0.6105</td>
<td>0.5236</td>
</tr>
<tr>
<td>RankNET</td>
<td>0.3005</td>
<td>0.2222</td>
<td>0.1873</td>
<td>0.3816</td>
<td>0.3386</td>
</tr>
<tr>
<td>RankBoost</td>
<td>0.4548</td>
<td>0.4370</td>
<td>0.2463</td>
<td>0.5829</td>
<td>0.4866</td>
</tr>
<tr>
<td>RankingSVM</td>
<td>0.3507</td>
<td>0.2370</td>
<td>0.1895</td>
<td>0.4154</td>
<td>0.3585</td>
</tr>
<tr>
<td>AdaRank</td>
<td>0.4321</td>
<td>0.4111</td>
<td>0.2307</td>
<td>0.5482</td>
<td>0.4421</td>
</tr>
<tr>
<td>pLogistic</td>
<td>0.4519</td>
<td>0.3926</td>
<td>0.2489</td>
<td>0.5535</td>
<td>0.4945</td>
</tr>
<tr>
<td>Logistic</td>
<td>0.4348</td>
<td>0.3778</td>
<td>0.2410</td>
<td>0.5526</td>
<td>0.4762</td>
</tr>
</tbody>
</table>
L2R in Practice

Walid Magdy, TTDS 2020/2021

Ranking SVM Example

• Q3: 3C>3A, 3C>3B, 3C>3D, 3B>3A, 3B>3D, 3A>3D
Summary

- IR as a classification task
- Learning to rank (L2R) approaches
 - Point-wise
 - Information Filtering
 - List-wise
 - Pair-wise
 - Ranking SVM
 - LambdaMART
- L2R could be applied to other applications
 - Rank emails by importance

Resources

- SVMRank: http://svmlight.joachims.org/
- L2R test sets:
 - Microsoft’s LETOR project
 - Microsoft L2R datasets