Text Technologies for Data Science
INFR11145

Web Search

Instructor:
Walid Magdy

3-Nov-2021

Lecture Objectives

• Learn about:
 • Working with Massive data
 • Link analysis (PageRank)
 • Anchor text
The Web Document Collection

- Huge / Massive
- Graph / Connected
- No design/co-ordination
- Distributed content publishing
- Content includes truth, lies, obsolete information, contradictions …
- Unstructured (text, html, …), semi-structured (XML, annotated photos), structured (DB) …
- Growth – slowed down from initial “volume doubling every few months” but still expanding
- Content can be dynamically generated

Effect of Massive data

- Web search engines work with huge amount of data
 - 20 PB/day in 2008 → 160 PB/day in 2013 → now??
 - 1 PB = 1,000 TB = 1,000,000 GB
- How this would affect a search engine?
 - Very challenging (storage, processing, networking, …)
 - Very useful still (makes stuff easier), how?
- Assume two good search engines the collects two sub-sets of the web
 - Search engine A collected N docs → precision@10 = 40%
 - Search engine B collected 4N docs → precision@10??
Effect of Massive data on Precision

- Assume two good search engines that collect two sub-sets of the web
 - Search engine A collected N docs \rightarrow precision@10 $= 40\%$
 - Search engine B collected $4N$ docs \rightarrow precision@10??
 - Distribution of positive/negative scores stays the same
 - Precision/Recall at a given score stays the same
 - In any decent IR system: more relevant docs exist at the top $\rightarrow P@n \uparrow \Rightarrow$ precision@10 $= 60\%$ (increases)

Big Data or Clever Algorithm?

- For Web search, larger index usually would beat a better retrieval algorithm
 - Google Index vs Bing Index
- Similar to other applications
 - Google MT vs IBM MT
 - Statistical methods trained over $10x$ training data beat deep NLP methods with $1x$ training data
 - In general ML, the more data, the better the results
 - Tweets classification: using $100x$ of noisy training data beats $1x$ of well prepared training data, even with absence of stemming & stopping
 - Question answering task:
 - IBM Watson vs Microsoft experiment
Big Data or Clever Algorithm?

- Question answering task:
 - Q: **Who created the character of Scrooge?**
 - A: Scrooge, introduced by Charles Dickens in “A Christmas Carol”
 - Requires heavy linguistic analysis, lots of research in TREC

- 2002, Microsoft
 - Identify (subj verb obj), rewrite as queries:
 - Q1: “created the character of Scrooge”
 - Q2: “the character of Scrooge was created by”
 - Search the web for exact phrase, get top 500 results
 - Extract phrase: Q1 or Q2, get most frequent
 - Very naive approach, ignores most answers patterns
 - Who cares!! Web is huge, you will find matches anyway

Search “Microsoft”

<table>
<thead>
<tr>
<th>Doc1</th>
<th>Doc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft.com</td>
<td>Tutorial.com</td>
</tr>
<tr>
<td>“Microsoft” mentioned 5 times</td>
<td>Tutorial on MS word</td>
</tr>
<tr>
<td>“Microsoft” mentioned 35 times</td>
<td></td>
</tr>
</tbody>
</table>
The Web as a Directed Graph

Assumption 1: A hyperlink between pages denotes author perceived relevance (quality signal)

Assumption 2: The text in the anchor of the hyperlink describes the target page (textual context)

Links between Pages

- Google Description of PageRank:
 - Relies on the "uniquely democratic" nature of the web
 - Interprets a link from page A to page B as "a vote"
- A → B: means A thinks B worth something
 - "wisdom of the crowds": many links means B must be good
 - Content-independent measure of quality of B
- Use as ranking feature, combined with content
 - But not all pages that link to B are of equal importance!
 • Importance of a link from CNN >>> link from blog page
- Google PageRank, 1998
 • How many "good" pages link to B?
Search “Microsoft”

Doc1

Microsoft.com

“Microsoft” mentioned 5 times

Doc2

Tutorial.com

Tutorial on MS word

“Microsoft” mentioned 35 times

PageRank: Random Surfer

• Analogy:
 • User starts browsing at a random page
 • Pick a random outgoing link → goes there → repeat forever
 • Example:
 G → E → F → E → D → B → C
 • With probability 1−λ jump to a random page
 • Otherwise, can get stuck forever A, or B ↔ C

• PageRank of page x
 • Probability of being at page x at a random moment in time
PageRank: Algorithm

- Initialize $PR_0(x) = \frac{100\%}{N}$
 - N: total number of pages
 - $PR_0(A) = .. = PR_0(K) = \frac{100\%}{11} = 9.1\%$

- For every page x

 $PR_{t+1}(x) = \frac{1 - \lambda}{N} + \lambda \sum_{y \rightarrow x} \frac{PR_t(y)}{L_{out}(y)}$

- $y \rightarrow x$ contributes part of its PR to x
- Spread PR equally among out-links
- Iterate till converge → PR scores should sum to 100%

PageRank: Example

- Let $\lambda = 0.82$

- $PR(B) = \frac{0.18}{11} + 0.82 \times [PR(C) + \frac{1}{2}PR(D) + \frac{1}{3}PR(E) + \frac{1}{2}PR(F) + \frac{1}{2}PR(G) + \frac{1}{2}PR(H) + \frac{1}{2}PR(I)]$

 $\approx 0.31 = 31\%$

- $PR(C) = \frac{0.18}{11} + 0.82 \times PR(B)$

 $= 0.18 \times 9.1\% + 0.82 \times 9.1\%$

 $= 9.1\%$

- $PR_{t+1}(C) = 0.18 \times 9.1\% + 0.82 \times 31\%$

 $\approx 26\%$
PageRank: Example result

- Algorithm converges after few iterations

- Observations
 - Pages with no inlinks: \(PR = \frac{(1 - \lambda)}{N} = 0.18/11 = 1.6\% \)
 - Same (or symmetric) inlinks \(\rightarrow\) same PR (e.g. D and F)
 - One inlink from high PR \(\gg\) many from low PR (e.g. C vs E)

Anchor Text

- Anchor Text (text of a link):
 - Description of destination page
 - Short, descriptive like a query
 - Re-formulated in different ways
 - Human "query expansion"
 - Used when indexing page content
 - Add text of all anchor text linking the page
 - Different weights for different anchor text
 - Weighted according to PR of linking page
 - Significantly improves retrieval
Link Spam

- Trackback links (blogs that link to me)
 - Based on $HTTP_REFERER$
 - Artificial feedback loops
 - Similar to “follow back” in Twitter
- Links from comments on sites with high PR
 - Links in comments on CNN
 - One solution: insert rel=nofollow into links
 - Link ignored when computing PR
- Link farms
 - Fake densely-connected graph
 - Hundreds of web domains / IPs can be hosted on one machine

The Reality

- PageRank is used in Google, but is hardly the full story of ranking
 - A big hit when initially proposed, but just one feature now
 - Many sophisticated features are used
 - Machine-learned ranking heavily used
 - Learning to Rank (L2R)
 - Many features are used, including PR
 - Still counted as a very useful feature
Summary

- Web data is massive
 - Challenging for efficiency, but useful for effectiveness
- PageRank:
 - Probability than random surfer is currently on page x
 - The more powerful pages linking to x, the higher the PR
- Anchor text:
 - Short concise description of target page content
 - Very useful for retrieval
- Link Spam
 - Trackable links, link farms

Resources

- Text book 1: Intro to IR, Section 21.1
- Text Book 2: IR in Practice: 4.5, 10.3
- Page Rank Paper:
- Additional reading:
- YouTube Video: How Search Works
 https://www.youtube.com/watch?v=BNHR6IQJGZs