Objectives

• Main objective of IR
• Different tasks in IR
 • Printed documents search
 • Patent search
 • Social search

• Possible ideas for Group Project 😊
Information Retrieval Objective

- IR is finding material of an unstructured nature that satisfies an information need from within large collections.

- **Information need**
 - Expected search scenario?
 - Modeling the task?

- **Data nature**
 - Approach?
 - Scalable? Fast?

- **User Satisfaction**
 - More relevant documents?
 - Effective evaluation?

Printed Documents Retrieval
Printed Documents Retrieval

- **Documents:**
 text on printed papers (books)

- **Information need:**
 Information within these books

- **Challenge:**
 It is an image of text

- **Common Approach:**
 OCR → Recognized text ← Search

- **Challenges in Common Approach:**
 OCR → Text with mistakes (WERₚ ≈ 40%)
 OCR → Not available for all languages

Problem

- **Text with errors (sometime many errors)**
n-gram Char Representation of OCR

- **Original:**
 example sentence

- **OCR output:**
 exarnple senlcnce

- **3-gram char representation:**
 \$ex\ exa\ xar\ arn\ nrl\ ple\ le\$ \$se\ sen\ enl\ lnc\ lcn\ nce\ ce\$

- **Query:**
 example sentence \rightarrow \$ex\ exa\ xam\ amp\ mpl\ ple\ le\$ \$se\ sen\ ent\ nte\ ten\ enc\ nce\ ce\$

- **Matching:**
 \$ex\ exa\ xar\ arn\ nrl\ ple\ le\$ \$se\ sen\ enl\ lnc\ lcn\ nce\ ce\$
 \$ex\ exa\ xam\ amp\ mpl\ ple\ le\$ \$se\ sen\ ent\ nte\ ten\ enc\ nce\ ce\$

OCR Correction using Error Model

- OCR text
- Generate Candidates
- Best Fitting Word Selection
- Corrected text
- Character Error Model
- Language Model
- Train Error Model

Use for search
Query Garbling using Error Model

- Query → Generate possible errors
- Use for search

OCR Correction using Edit Distance

- OCR text → Generate Candidates → Best Fitting Word Selection → Corrected text
- Use for search
Multi-OCR Text Fusion

OCR text 1

OCR text 2

Word Alignment

Best Fitting Word Selection

Language Model

Fused text

Use for search

OCR Search

- Recognition errors in OCR text degrades retrieval
- Different methods of text processing can overcome the negative effect on retrieval and improves search
- n-gram character representation improves retrieval, but not that much
- Some training and resources are needed which can be manual correction, trained language model, or both

- Previous methods fail when errors are large (WER>50%)
Solution – back to Information Need

- **Information need:** the printed papers
- **Question:** Why convert image to text?
- **Related work:** Word Spotting

Modeling the Problem

<table>
<thead>
<tr>
<th>Text Domain</th>
<th>Image Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td>Information</td>
</tr>
<tr>
<td>Draw</td>
<td>OCR</td>
</tr>
</tbody>
</table>

Institute for Language, Cognition and Computation
ILCC
OCRless Search

Institute for Language, Cognition and Computation
ILCC

Solution - OCRless Search

Institute for Language, Cognition and Computation
ILCC
Solution – OCRless Search

- Effective and fast
- Robust to OCR errors (v1de0)
- No training resources required
- Language independent

- Microsoft TechFest Demo
 The same engine for searching printed documents in: Arabic, English, Chinese, Hebrew, and Hieroglyphic

Printed Documents Retrieval

- Text-based solutions: correction
- Image-based: clustering

- Current State-of-the-art?

- Information need → Approach
Patent Search

- Given a patent application, check if the invention described is novel

Process:
- **Query**
- **Search**
- **Results list**

Materials:
- Patent application
- Several languages
- Many results to check 100-600 docs/search
Patent Search – User Satisfaction

- NTCIR, CLEF, TREC
- Recall-oriented → Try not to miss a relevant document
 - Recall is the objective
- Precision is also important
- Huge # documents checked (100-600 documents)

- Evaluation: average precision (AP)!!
 - Focuses on finding relevant docs early in ranked list
 - Less focus on recall

Example

For a topic with 4 relevant docs and 1st 100 docs to be examined:

System1: relevant ranks = {1}
System2: relevant ranks = {50, 51, 53, 54}
System3: relevant ranks = {1, 2, 3, 4}

\[
\begin{align*}
\text{AP}_{\text{system1}} &= 0.25 \\
\text{AP}_{\text{system2}} &= 0.0481 \\
\text{AP}_{\text{system3}} &= 1 \\
\text{R}_{\text{system1}} &= 0.25 \\
\text{R}_{\text{system2}} &= 1 \\
\text{R}_{\text{system3}} &= 1
\end{align*}
\]

- We need a metric that reflects recall and ranking quality in one measure
PRES: Patent Retrieval Evaluation Score

\[PRES = 1 - \sum_{i=1}^{n} \frac{r_i}{N_{\text{max}}} \left(\frac{n+1}{2}\right) \]

- **n**: number of relevant docs
- **r_i**: rank of the ith relevant document
- **N_{max}**: max number of checked docs

- Derived from \(R_{\text{norm}} \) (Rocchio, 1964)
- Gives higher score for systems achieving higher recall and better average relative ranking
- Dependent on user’s potential/effort (\(N_{\text{max}} \))
- Robust to incomplete relevance judgements

PRES: as a cumulative gain

- Official score in CLEF-IP since 2010
- Adapted in many Recall-oriented IR tasks

- User Satisfaction \(\rightarrow \) Objective function
Patent Search – CLIR

- Query: Full patent application
- Common approach: MT (the best)
- Challenge: training recourses + speed!
- Ideal: Query + Document translation

Patent Search – CLIR – Objective?

- Manual translation
 It is a great idea to apply stemming in information retrieval
- MT output
 he are an great ideas to applied stem by information retrieving

- MT4IR: An efficient MT that neglects morphological and syntactic features of output
Ordinary MT vs. MT4IR

Diagram showing the process of indexing, querying, searching, and translating.

Patent Search – MT4IR

Graph displaying retrieval effectiveness for a Patent CLIR En-Fr task.
E.g. play, plays, played, playing
Social Search
Microblog (Twitter) Search

- TREC Microblog track → Ad-hoc, filtering

- User’s information need?
- Search scenario? Task?
- Boolean? News updates?
Social Media & News

- News websites are biased

- People use social media to
 - Report news
 - Comment on news
 - Discuss different views on events

- Discussions on social media, reflects public interest

- Can social media answer the question: “What is happening in <region>?”

TweetMogaz

A News Portal of Tweets
TweetMogaz Components

Tweet Streaming

Information Filtering

Presentation

Index (Solr)

Tweets Analysis

Story Detection

Classification

Adaptive Information Filtering

Online Stream

Predefined Queries

Boolean Filter

Random Sampling

Term Selection

(positive)

(positive)

Train Classifier

Filtered Stream

Information need

→ Retrieval task
Summary

- The objective is IR is “User Satisfaction”
- Understand the user needs well
- Design the IR task carefully
- You do not have to stick to the path in the literature
- Are you sure performance is measured correctly?

- Beating the baseline is always desirable, just be sure you are moving in the right direction

Readings

- Magdy W., K. Darwish, and M. El-Saban. Efficient Language-Independent Retrieval of Printed Documents without OCR. *SPIRE 2009*