Lecture Objectives

- **Learn** about Probabilistic models
 - BM25

- **Learn** about LM for IR
Recall: VSM & TFIDF term weighting

- Combines TF and IDF to find the weight of terms
 \[w_{t,d} = \left(1 + \log_{10} tf(t,d) \right) \times \log_{10} \left(\frac{N}{df(t)} \right) \]
- For a query \(q \) and document \(d \), retrieval score \(f(q,d) \):
 \[\text{Score}(q,d) = \sum_{t \in q \cap d} w_{t,d} \]
- TFIDF observations
 - Term appearing more in a doc gets higher weight (TF)
 - First occurrence is more important (log)
 - Rare terms are more important (IDF)
 - Bias towards longer documents

Can we do better?

IR Model

- VSM is very heuristic in nature
 - No notion of relevance is there (still works well)
 - Any weighting scheme, similarity measure can be used
 - Components not interpretable \(\rightarrow \) no guide for what to try next
 - More engineering rather than theory \(\rightarrow \) tweak, run, observe, tweak …
 - Very popular, hard to beat, strong baseline
 - Easy to adapt good ideas from other models

- Probabilistic Model of retrieval
 - Mathematical formulisation for relevant / irrelevant sets
 - Explicitly defines random variables (R,Q,D)
 - Specific about what their values are
 - State the assumptions behind each step
 - Watch out for contradictions
Probabilistic Models

• Concept: Uncertainty is inherent part of IR process
• Probability theory is strong foundation for representing and manipulating uncertainty

• Probability Ranking Principle (1977)

Probability Ranking Principle

• “If a reference retrieval system’s response to each request is a ranking of the documents in the collection in order of decreasing probability of relevance to the user who submitted the request,
• where the probabilities are estimated as accurately as possible on the basis of whatever data have been made available to the system for this purpose,
• the overall effectiveness of the system to its user will be the best that is obtainable on the basis of those data.”

• Basis for most probabilistic approaches for IR
Formulation of PRP

- Rank docs by probability of relevance
 - \(P(R|D_{r1}) > P(R|D_{r2}) > P(R|D_{r3}) > P(R|D_{r4}) > \ldots \)

- Estimate probability as accurate as possible
 - \(P_{\text{est}}(R|D) \approx P_{\text{true}}(R|D) \)

- Estimate with all possibly available data
 - \(P_{\text{est}}(R \mid \text{doc, session, context, user profile, \ldots}) \)

- Best possible accuracy can be achieved with that data
 - \(\rightarrow \) the perfect IR system
 - Is it really doable?

- **How to estimate the probability of relevance?**

PRP Concept

- Imagine IR as a classification problem

\[
P(R|D) + P(NR|D) = 1
\]

- Document \(D \) is relevant if \(P(R|D) > P(NR|D) \)
Probability of Relevance

- What is $P_{\text{true}}(\text{rel} \mid \text{doc, query, session, user, ...})$?
 - Isn’t relevance just the user’s opinion?
 - User decides relevant or not, what is the “probability” thing?
- Search algorithm cannot look into your head (yet!)
 - Relevance depends on factors that algorithm cannot observe
 - SIGIR 2016 best paper award: *Understanding Information Need: an fMRI Study*
- Different users may disagree on relevance of the same doc
 - Even similar users, doing the same task, in the same context
- $P_{\text{true}}(\text{rel} \mid Q, D)$:
 - Proportion of all unseen users / context / tasks
 for which D would have judged relevant to Q
- Similar to: $P(\text{die}=6 \mid \text{even and not square})$

Okapi BM25 Model

- Based on the probabilistic model
 - A document D is relevant if $P(R=1|D) > P(R=0|D)$
- Extension to the “binary independence model”
 - **Binary features**: Document represented by a vector of binary features indicating term occurrence
 - Assume **term independence** (Naïve Bayes assumption)
 \rightarrow BOW trick
- In 1995, *Stephan Robertson* with his group came up with the **BM25 Formula** as part of the **Okapi** project.
 - It outperformed all other systems in TREC
 - Popular and effective ranking algorithm
Okapi BM25 Ranking Function

- Let L_d be the number of terms in document d
- Let \bar{L} be the average number of terms in a document

$$w_{t,d} = \frac{tf_{t,d}}{k \cdot \frac{L_d}{\bar{L}} + tf_{t,d} + 0.5} \times \log_{10} \left(\frac{N - df_t + 0.5}{df_t + 0.5} \right)$$

- Best practices: $k=1.5$
Probabilistic Model in IR

- Focuses on the probability of relevance of docs
- Could be mathematically proved
- Different ways to apply it
- BM25 is the most common formula for it

- What other models could be still used in IR?

“Noisy-Channel” Model of IR

User has a information need and writes down a query

Machine’s task: Given the query, guess which document matches the query.
Concept

- Coming up with good queries?
 - Think of words that would likely appear in a relevant doc
 - Use those words as the query
- The language modeling approach to IR directly models that idea
 - a document is a good match to a query if the document model is likely to generate the query
 - happens if the document contains the query words often.
- Build a probabilistic language model M_d from each document d
- Rank documents based on the probability of the model generating the query: $P(q|M_d)$.
Language Model (LM)

- A language model is a probability distribution over strings drawn from some vocabulary.
- A topic in a document or query can be represented as a language model.
 - i.e., words that tend to occur often when discussing a topic will have high probabilities in the corresponding language model.

Unigram LM

- Terms are randomly drawn from a document (with replacement).

\[P(\text{word}_1, \text{word}_2, \text{word}_3) = P(\text{word}_1) \times P(\text{word}_2) \times P(\text{word}_3) \times P(\text{word}_4) \]

\[= \left(\frac{4}{9} \right) \times \left(\frac{2}{9} \right) \times \left(\frac{4}{9} \right) \times \left(\frac{3}{9} \right) \]
Example

| w | $P(w|q_1)$ | w | $P(w|q_1)$ |
|-------|------------|-------|------------|
| STOP | 0.2 | toad | 0.01 |
| the | 0.2 | said | 0.03 |
| a | 0.1 | likes | 0.02 |
| frog | 0.01 | that | 0.04 |
| ... | ... | ... | ... |

- This is a one-state probabilistic finite-state automaton – a unigram language model.
- $S = \text{“frog said that toad likes frog STOP”}$

 $P(S) = 0.01 \times 0.03 \times 0.04 \times 0.01 \times 0.02 \times 0.01 \times 0.02 = 0.0000000000048$

Comparing LMs

- M_{d1}
 LM generated from Doc 1
- M_{d2}
 LM generated from Doc 2
- Try to generate sentence S from M_{d1} & M_{d2}

Model M$_{d1}$

<table>
<thead>
<tr>
<th>$P(w)$</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>the</td>
</tr>
<tr>
<td>0.0001</td>
<td>yon</td>
</tr>
<tr>
<td>0.01</td>
<td>class</td>
</tr>
<tr>
<td>0.0005</td>
<td>maiden</td>
</tr>
<tr>
<td>0.0003</td>
<td>sayst</td>
</tr>
<tr>
<td>0.0001</td>
<td>pleaseth</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Model M$_{d2}$

<table>
<thead>
<tr>
<th>$P(w)$</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>the</td>
</tr>
<tr>
<td>0.1</td>
<td>yon</td>
</tr>
<tr>
<td>0.001</td>
<td>class</td>
</tr>
<tr>
<td>0.01</td>
<td>maiden</td>
</tr>
<tr>
<td>0.03</td>
<td>sayst</td>
</tr>
<tr>
<td>0.02</td>
<td>pleaseth</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>text:</th>
<th>the</th>
<th>class</th>
<th>pleaseth</th>
<th>yon</th>
<th>maiden</th>
<th>$P(S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{d1}:</td>
<td>0.2</td>
<td>0.01</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.00000000000001</td>
</tr>
<tr>
<td>M_{d2}:</td>
<td>0.2</td>
<td>0.001</td>
<td>0.02</td>
<td>0.1</td>
<td>0.01</td>
<td>0.0000000004</td>
</tr>
</tbody>
</table>

$P(\text{text}|M_{d2}) > P(\text{text}|M_{d1})$
Stochastic Language Models

- A statistical model for generating text
 - Probability distribution over strings in a given language

\[
P(\bullet \bullet \bullet | M) = P(\bullet | M) \\
P(\bullet | M, \bullet) \\
P(\bullet | M, \bullet \bullet) \\
P(\bullet | M, \bullet \bullet \bullet)
\]

Unigram and Higher-order LM

\[
P(\bullet \bullet \bullet)
= P(\bullet) P(\bullet | \bullet) P(\bullet | \bullet \bullet) P(\bullet | \bullet \bullet \bullet)
\]

- **Unigram Language Models**
 \[
P(\bullet) P(\bullet) P(\bullet) P(\bullet)
\]

- **Bigram** (generally, \(n\)-gram) Language Models
 \[
P(\bullet) P(\bullet | \bullet) P(\bullet | \bullet) P(\bullet | \bullet)
\]
LM in IR

• Each document is treated as basis for a LM.
• Given a query q, rank documents based on $P(d|q)$

$$P(d|q) = \frac{P(q|d)P(d)}{P(q)}$$

• $P(q)$ is the same for all documents ➔ ignore
• $P(d)$ is the prior – often treated as the same for all d
 • But we can give a prior to “high-quality” documents, e.g., those with high PageRank (later to be discussed).
• $P(q|d)$ is the probability of q given d.

• So to rank documents according to relevance to q, ranking according to $P(q|d)$ and $P(d|q)$ is equivalent

LM in IR: Basic idea

• We attempt to model the query generation process.
• Then we rank documents by the probability that a query would be observed as a random sample from the respective document model.

• That is, we rank according to $P(q|d)$.
We will make the conditional independence assumption.

$$P(q|M_d) = P((t_1, ..., t_{|q|})|M_d) = \prod_{1 \leq k \leq |q|} P(t_k|M_d)$$

$|q|$: length of q; t_k: token occurring at position k in q

This is equivalent to:

$$P(q|M_d) = \prod_{\text{each term } t \text{ in } q} P(t|M_d)^{tf_{t,q}}$$

$tf_{t,q}$: term frequency (# occurrences) of t in q

Multinomial model (omitting constant factor)

Parameter estimation

- Probability of a term t in a LM M_d using Maximum Likelihood Estimation (MLE)

$$P(t|M_d) = \frac{tf_{t,d}}{|d|}$$

$|d|$: length of d;

$tf_{t,d}$: # occurrences of t in d

- Probability of a query q to be noticed in a LM M_d:

$$P(q|M_d) = \prod_{t \in q} \left(\frac{tf_{t,d}}{|d|} \right)^{tf_{t,q}}$$
Example

\[P(\text{red, green, blue}) = P(\text{red})^2 \times P(\text{green}) \times P(\text{blue}) = (4/9)^2 \times (2/9) \times (3/9) = 0.0146 \]

\[P(\text{red, yellow, blue}) \]

- Is that fair?
 - In VSM, \(S(Q,D) \) was summation, works more like OR in Boolean search. Missing one term reduces score only
 - In language model, \(S(Q,D) \) is \(P(Q|D) \) → Multiplication of probabilities → missing one term makes score = 0
 - Is there a better way to handle unseen terms?

Smoothing

- Problem: Zero frequency
- Solution: “Smooth” terms probability

\[P(t) \]

Maximum Likelihood Estimate

\[p_{ML}(t) = \frac{\text{count of } t}{\text{count of all words}} \]

Smoothed probability distribution
Smoothing

- Document texts are a sample from the language model
- Missing words should not have zero probability of occurring
- A missing term is possible (even though it didn’t occur)
 - but no more likely than would be expected by chance in the collection.
- A technique for estimating probabilities for missing (or unseen) words
 - Overcomes data-sparsity problem
 - lower (or discount) the probability estimates for words that are seen in the document text
 - assign that “left-over” probability to the estimates for the words that are not seen in the text (and also on the seen ones)

Mixture Model

\[P(t|d) = \lambda P(t|M_d) + (1 - \lambda) P(t|M_c) \]

- Mixes the probability from the document with the general collection frequency of the word.
- Estimate for unseen words is \((1-\lambda) P(t|M_c)\)
 - Based on collection language model (background LM)
 - \(P(t|M_c)\) is the probability for query word \(i\) in the collection language model for collection \(C\) (background probability)
 - \(\lambda\) is a parameter controlling probability for unseen words
- Estimate for observed words is
 \[\lambda P(t|M_d) + (1-\lambda) P(t|M_c) \]
Jelinek-Mercer Smoothing

$P(t|d) = \lambda P(t|M_d) + (1 - \lambda)P(t|M_c)$

- **High value of λ:** “conjunctive-like” search – tends to retrieve documents containing all query words.
- **Low value of λ:** more disjunctive, suitable for long queries
- Correctly setting λ is important for good performance.

- Final Ranking function:

$$P(q|M_d) \propto \prod_{1 \leq k \leq |q|} \left(\lambda \cdot P(t_k|M_d) + (1 - \lambda) \cdot P(t_k|M_c) \right)$$

Example

- **Collection:** d_1 and d_2
- **d_1:** “Jackson was one of the most talented entertainers of all time”
- **d_2:** “Michael Jackson anointed himself King of Pop”
- **Query q:** Michael Jackson
- Use mixture model with $\lambda = 1/2$

- $P(q|d_1) = [(0/11 + 1/18)/2] \cdot [(1/11 + 2/18)/2] \approx 0.003$
- $P(q|d_2) = [(1/7 + 1/18)/2] \cdot [(1/7 + 2/18)/2] \approx 0.013$
- Ranking: $d_2 > d_1$
Notes on Query Likelihood Model

- It has similar effectiveness to BM25
- With more sophisticated techniques, it outperforms BM25
 - Topic models
- There are several alternative smoothing techniques
 - That was just an example

n-grams LMs

- Unigram language model
 - probability distribution over the words in a language
 - associates a probability of occurrence with every word
 - generation of text consists of pulling words out of a “bucket” according to the probability distribution and replacing them

- N-gram language model
 - some applications use bigram and trigram language models where probabilities depend on previous words
 - predicts a word based on the previous n-1 words
LMs for IR: 3 possibilities

- Probability of generating the query text from a document language model
- Probability of generating the document text from a query language model
- Comparing the language models representing the query and document topics

Summary

- Three ways to model IR
 - VSM
 How query vector aligns with document vector?
 - Probabilistic Model
 What is the relevance probability of document D given query Q?
 - LM
 How likely is it possible to observe/generate sequence of terms Q in a language model of document D?
Resources

• Text book 1: Intro to IR, Chapter 12
• Text book 2: IR in Practice, Chapter 7.2, 7.3
• Readings: