Text Technologies for Data Science
INFR11145

Ranked IR

Instructor:
Walid Magdy

Lecture Objectives

• Learn about Ranked IR
 • TFIDF
 • VSM
 • SMART notation

• Implement:
 • TFIDF
Boolean Retrieval

- Thus far, our queries have all been Boolean.
 - Documents either: “match” or “no match”.
- Good for expert users with precise understanding of their needs and the collection.
 - Patent search uses sophisticated sets of Boolean queries and check hundreds of search results
 (car OR vehicle) AND (motor OR engine) AND NOT (cooler)
- Not good for the majority of users.
 - Most incapable of writing Boolean queries.
 - Most don’t want to go through 1000s of results.
 - This is particularly true for web search
 - Question: What is the most unused web-search feature?

Ranked Retrieval

- Typical queries: free text queries
- Results are “ranked” with respect to a query
- Large result sets are not an issue
 - We just show the top k (≈ 10) results
 - We don’t overwhelm the user
- Criteria:
 - Top ranked documents are the most likely to satisfy user’s query
 - Score is based on how well documents match a query
 \[\text{Score}(d,q) \]
Old Example

- Find documents matching query \{ink, wink\}
 1. Load inverted lists for each query word
 2. Merge two postings lists \(\rightarrow\) **Linear merge**

- Apply function for matches
 - **Boolean**: exist / not exist = 0 or 1
 - **Ranked**: \(f(tf, df, length, \ldots) = 0 \rightarrow 1\)

 \[
 \begin{array}{c|c|c}
 \text{ink} & 3:1 & 4:1 & 5:1 \\
 \text{wink} & 1:1 & 5:1 & \\
 \end{array}
 \]

<table>
<thead>
<tr>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: (f(0,1))</td>
</tr>
<tr>
<td>3: (f(1,0))</td>
</tr>
<tr>
<td>4: (f(1,0))</td>
</tr>
<tr>
<td>5: (f(1,1))</td>
</tr>
</tbody>
</table>

Function example: Jaccard coefficient

- A commonly used measure of overlap of two sets \(A\) and \(B\)

 \[
 \text{jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}
 \]

 \[
 \text{jaccard}(A, A) = 1
 \]

 \[
 \text{jaccard}(A, B) = 0, \quad \text{if} \ A \cap B = 0
 \]

- Example:
 - \(D1 \cup D2 = \{\text{he, likes, to, wink, and, drink}\}\)
 - \(D1 \cap D2 = \{\text{he, likes, to, drink}\}\)
 - \(\text{jaccard}(D1, D2) = \frac{4}{6} = 0.6667\)

 D1: He likes to wink, he likes to drink

 D2: He likes to drink, and drink, and drink
Jaccard coefficient: Issues

- Does not consider **term frequency** (how many times a term occurs in a document)
- It treats all terms equally!
 - How about **rare terms** in a collection? more informative than frequent terms.
 - *He likes to drink*, should “to” == “drink”
- Needs more sophisticated way of **length normalization**
 - \(|D_1| = 3, |D_2| = 1000!\)
 - \(D_1 \to Q, D_2 \to D\)

Should terms be treaded the same?

- Collection of 5 documents (balls = terms)
- Query

- Which is the least relevant document?
- Which is the most relevant document?
TFIDF

- **TFIDF:** Term Frequency, Inverse Document Frequency

- **tf(t,d):**
 number of times term \(t \) appeared in document \(d \)
 - As \(tf(t,d) \uparrow \uparrow \rightarrow \) importance of \(t \) in \(d \) \uparrow \uparrow
 - Document about IR, contains “retrieval” more than others

- **df(t):**
 number of documents term \(t \) appeared in
 - As \(df(d) \uparrow \uparrow \rightarrow \) importance if \(t \) in a collection \(\downarrow \downarrow \)
 - “the” appears in many document \(\rightarrow \) not important
 - “FT” is not important word in financial times articles

DF, CF, & IDF

- **DF ≠ CF** (collection frequency)
 - \(cf(t) = \) total number of occurrences of term \(t \) in a collection
 - \(df(t) \leq N \) (\(N \): number of documents in a collection)
 - \(cf(t) \) can be \(\geq N \)

- **DF** is more commonly used in IR than **CF**
 - **CF** is still used

- **idf(t):** inverse of \(df(t) \)
 - As \(idf(t) \uparrow \uparrow \rightarrow \) rare term \(\rightarrow \) importance \(\uparrow \uparrow \)
 - \(idf(t) \rightarrow \) measure of the informativeness of \(t \)
DF vs CF

<table>
<thead>
<tr>
<th></th>
<th>he</th>
<th>drink</th>
<th>ink</th>
<th>likes</th>
<th>pink</th>
<th>think</th>
<th>wink</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\(\leftarrow D1: \text{He likes to wink, he likes to drink} \)
\(\leftarrow D2: \text{He likes to drink, and drink, and drink} \)
\(\leftarrow D3: \text{The thing he likes to drink is ink} \)
\(\leftarrow D4: \text{The ink he likes to drink is pink} \)
\(\leftarrow D5: \text{He likes to wink, and drink pink ink} \)

DF 6 7 3 6 2 1 2
CF 5 5 3 5 2 1 2

IDF: formula

\[idf(t) = \log_{10}(\frac{N}{df(t)}) \]

- Log scale used to dampen the effect of IDF
- Suppose \(N = 1 \text{ million} \)

<table>
<thead>
<tr>
<th>term</th>
<th>df(t)</th>
<th>idf(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>calpurnia</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>animal</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>sky</td>
<td>1,000</td>
<td>3</td>
</tr>
<tr>
<td>fly</td>
<td>10,000</td>
<td>2</td>
</tr>
<tr>
<td>under</td>
<td>100,000</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1,000,000</td>
<td>0</td>
</tr>
</tbody>
</table>
TFIDF term weighting

- One of the best-known term weighting schemes in IR
 - Increases with the number of occurrences within a document
 - Increases with the rarity of the term in the collection
- Combines TF and IDF to find the weight of terms
 \[w_{t,d} = \left(1 + \log_{10} tf(t,d)\right) \times \log_{10}\left(\frac{N}{df(t)}\right) \]
- For a query \(q \) and document \(d \), retrieval score \(f(q,d) \):
 \[Score(q,d) = \sum_{t \in q \cap d} w_{t,d} \]

Document/Term vectors with tfidf

<table>
<thead>
<tr>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>5.25</td>
<td>3.18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brutus</td>
<td>1.21</td>
<td>6.1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>8.59</td>
<td>2.54</td>
<td>0</td>
<td>1.51</td>
<td>0.25</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1.54</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>2.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1.51</td>
<td>0</td>
<td>1.9</td>
<td>0.12</td>
<td>5.25</td>
</tr>
<tr>
<td>worser</td>
<td>1.37</td>
<td>0</td>
<td>0.11</td>
<td>4.15</td>
<td>0.25</td>
</tr>
</tbody>
</table>

→ Vector Space Model
Vector Space Model

• Documents and Queries are presented as vectors
• Match \((Q,D)\) = Distance between vectors
• Example: \(Q=\) Gossip Jealous
• Euclidean Distance?
 \(Distance\ between\ the\ endpoints\ of\ the\ two\ vectors\)
• Large for vectors of diff. lengths
• Take a document \(d\) and append it to itself. Call this document \(d'\).
 • “Semantically” \(d\) and \(d'\) have the same content
 • Euclidean distance can be quite large

Angle Instead of Distance

• The angle between the two documents is 0, corresponding to maximal similarity.
• Key idea: Rank documents according to angle with query.
 • Rank documents in increasing order of the angle with query
 • Rank documents in decreasing order of cosine (query, document)
• Cosine of angle = projection of one vector on the other
Length Normalization

- A vector can be normalized by dividing each of its components by its length – for this we use the L_2 norm:
 \[
 \| \vec{x} \|_2 = \sqrt{\sum_i x_i^2}
 \]

- Dividing a vector by its L_2 norm makes it a unit (length) vector (on surface of unit hypersphere)

- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

Example

- $D_1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \Rightarrow \| D_1 \|_2 = \sqrt{1 + 9 + 4} = 3.74$

- $D_{1\text{ normalized}} = \begin{bmatrix} 0.267 \\ 0.802 \\ 0.535 \end{bmatrix}$

- $D_2 = \begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix} \Rightarrow \| D_2 \|_2 = \sqrt{9 + 81 + 36} = 11.25$

- $D_{2\text{ normalized}} = \begin{bmatrix} 0.267 \\ 0.802 \\ 0.535 \end{bmatrix}$
Cosine “Similarity” (Query, Document)

- \(\tilde{q}_i \) is the tf-idf weight of term \(i \) in the query
- \(\tilde{d}_i \) is the tf-idf weight of term \(i \) in the document
- For normalized vectors:
 \[
 \cos(\tilde{q}, \tilde{d}) = \frac{\tilde{q} \cdot \tilde{d}}{\|\tilde{q}\| \|\tilde{d}\|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}
 \]
- For non-normalized vectors:
 \[
 \cos(\tilde{q}, \tilde{d}) = \frac{\tilde{q} \cdot \tilde{d}}{\|\tilde{q}\| \|\tilde{d}\|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}
 \]

Algorithm

COSINESCORE(q)

1. float Scores[N] = 0
2. float Length[N]
3. for each query term \(t \)
4. do calculate \(w_{t,q} \) and fetch postings list for \(t \)
5. for each pair \((d, tf_{t,d}) \) in postings list
6. do Scores[\(d \)] += \(w_{t,d} \times w_{t,q} \)
7. Read the array Length
8. for each \(d \)
9. do Scores[\(d \)] = Scores[\(d \)] / Length[\(d \)]
10. return Top \(K \) components of Scores[]
TFIDF Variants

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (natural)</td>
<td></td>
<td>n (none)</td>
</tr>
<tr>
<td>l (logarithm)</td>
<td>$1 + \log(tf_{t,d})$</td>
<td>$1 + \log(tf_{t,d})$</td>
</tr>
<tr>
<td>a (augmented)</td>
<td>$0.5 + \frac{0.5 \cdot tf_{t,d}}{\max_{t}tf_{t,d}}$</td>
<td>1</td>
</tr>
<tr>
<td>b (boolean)</td>
<td>$\begin{cases} 1 & \text{if } tf_{t,d} > 0 \ 0 & \text{otherwise} \end{cases}$</td>
<td>$\frac{N}{df_{t}}$</td>
</tr>
<tr>
<td>L (log ave)</td>
<td>$\frac{1 + \log(tf_{t,d})}{1 + \log(\text{ave}{t}df{t,d})}$</td>
<td>c (cosine)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{1}{\sqrt{w_{1}^2 + w_{2}^2 + \ldots + w_{n}^2}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{1}{\text{CharLength}^{\alpha}}$, $\alpha < 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>u (pivoted unique)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b (byte size)</td>
</tr>
</tbody>
</table>

- Many search engines allow for different weightings for queries vs. documents
- **SMART** Notation: use notation $ddd.qqq$, using the acronyms from the table
- A very standard weighting scheme is: *Inc.ltc*

For Lab and CW

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (natural)</td>
<td></td>
<td>n (none)</td>
</tr>
<tr>
<td>l (logarithm)</td>
<td>$1 + \log(tf_{t,d})$</td>
<td>$1 + \log(tf_{t,d})$</td>
</tr>
<tr>
<td>a (augmented)</td>
<td>$0.5 + \frac{0.5 \cdot tf_{t,d}}{\max_{t}tf_{t,d}}$</td>
<td>1</td>
</tr>
<tr>
<td>b (boolean)</td>
<td>$\begin{cases} 1 & \text{if } tf_{t,d} > 0 \ 0 & \text{otherwise} \end{cases}$</td>
<td>$\frac{N}{df_{t}}$</td>
</tr>
<tr>
<td>L (log ave)</td>
<td>$\frac{1 + \log(tf_{t,d})}{1 + \log(\text{ave}{t}df{t,d})}$</td>
<td>c (cosine)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{1}{\sqrt{w_{1}^2 + w_{2}^2 + \ldots + w_{n}^2}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{1}{\text{CharLength}^{\alpha}}$, $\alpha < 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>u (pivoted unique)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b (byte size)</td>
</tr>
</tbody>
</table>

"**OR**" operator, then:

$$Score(q,d) = \sum_{t \in q \cap d} \left(1 + \log_{10} tf(t,d) \right) \times \log_{10} \left(\frac{N}{df(t)} \right)$$
Summary of Steps:

• Represent the query as a weighted \(tf-idf \) vector
• Represent each document as a weighted \(tf-idf \) vector
• Compute the cosine similarity score for the query vector and each document vector
• Rank documents with respect to the query by score
• Return the top \(K \) (e.g., \(K = 10 \)) to the user

Retrieval Output

• For a query \(q_1 \), the output would be a list of documents ranked according to the \(score(q_1, d) \)

• Common output format:

<table>
<thead>
<tr>
<th>Query id</th>
<th>Document id</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 710</td>
<td>0.9234</td>
</tr>
<tr>
<td>1</td>
<td>0 213</td>
<td>0.7678</td>
</tr>
<tr>
<td>1</td>
<td>0 103</td>
<td>0.6761</td>
</tr>
<tr>
<td>1</td>
<td>0 13</td>
<td>0.6556</td>
</tr>
<tr>
<td>1</td>
<td>0 501</td>
<td>0.4301</td>
</tr>
</tbody>
</table>
Resources

- Text book 1: Intro to IR, Chapter 6.2 → 6.4
- Text book 2: IR in Practice, Chapter 7

- Lab 3