Lecture Objectives

• Learn about Ranked IR
 • TFIDF
 • VSM
 • SMART notation

• Implement:
 • TFIDF
Boolean Retrieval

- Thus far, our queries have all been Boolean.
 - Documents either: “match” or “no match”.
- Good for expert users with precise understanding of their needs and the collection.
 - Patent search uses sophisticated sets of Boolean queries and check hundreds of search results: (car OR vehicle) AND (motor OR engine) AND NOT (cooler)
- Not good for the majority of users.
 - Most incapable of writing Boolean queries.
 - Most don’t want to go through 1000s of results.
 - This is particularly true for web search
 - Question: What is the most unused web-search feature?

Ranked Retrieval

- Typical queries: free text queries
- Results are “ranked” with respect to a query
- Large result sets are not an issue
 - We just show the top k (≈ 10) results
 - We don’t overwhelm the user
- Criteria:
 - Top ranked documents are the most likely to satisfy user’s query
 - Score is based on how well documents match a query
 \[\text{Score}(d,q) \]
Old Example

• Find documents matching query \{ink\ wink\}
 1. Load inverted lists for each query word
 2. Merge two postings lists → Linear merge

• Apply function for matches
 • Boolean: exist / not exist = 0 or 1
 • Ranked: \(f(tf, df, length, \ldots) = 0 \rightarrow 1\)

Matches
1: \(f(0,1)\)
3: \(f(1,0)\)
4: \(f(1,0)\)
5: \(f(1,1)\)

Function example: Jaccard coefficient

• a commonly used measure of overlap of two sets \(A\) and \(B\)

\[
jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|}
\]

\(jaccard(A, A) = 1\)

\(jaccard(A, B) = 0, \quad \text{if } A \cap B = 0\)

Example:
• \(D1 \cup D2 = \{\text{he, likes, to, wink, and, drink}\}\)
• \(D1 \cap D2 = \{\text{he, likes, to, drink}\}\)
• \(jaccard(D1, D2) = \frac{4}{6} = 0.6667\)

Jaccard coefficient: Issues

- Does not consider **term frequency** (how many times a term occurs in a document)
- It treats all terms equally!
 - How about **rare terms** in a collection? more informative than frequent terms.
 - *He likes to drink*, shall “to” == “drink”?
- Needs more sophisticated way of **length normalization**
 - $|D_1| = 3$, $|D_2| = 1000!$
 - $D_1 \rightarrow Q$, $D_2 \rightarrow D$

Should terms be treaded the same?

- Collection of 5 documents (balls = terms)
- Query ![balls](image)
- Which is the least relevant document?
- Which is the most relevant document?
TFIDF

- **TFIDF:** Term Frequency, Inverse Document Frequency

- **tf(t,d):** number of times term \(t \) appeared in document \(d \)
 - As \(tf(t,d) \uparrow \uparrow \rightarrow \) importance of \(t \) in \(d \uparrow \uparrow \)
 - Document about IR, contains “retrieval” more than others

- **df(t):** number of documents term \(t \) appeared in
 - As \(df(d) \uparrow \uparrow \rightarrow \) importance if \(t \) in a collection \(\downarrow \downarrow \)
 - “the” appears in many documents \(\rightarrow \) not important
 - “FT” is not important word in financial times articles

DF, CF, & IDF

- **DF \neq CF** (collection frequency)
 - \(cf(t) \) = total number of occurrences of term \(t \) in a collection
 - \(df(t) \leq N \) (\(N \): number of documents in a collection)
 - \(cf(t) \) can be \(\geq N \)

- **DF** is more commonly used in IR than **CF**
 - **CF** is still used

- **idf(t):** inverse of \(df(t) \)
 - As \(idf(t) \uparrow \uparrow \rightarrow \) rare term \(\rightarrow \) importance \(\uparrow \uparrow \)
 - \(idf(t) \rightarrow \) measure of the informativeness of \(t \)
DF vs CF

<table>
<thead>
<tr>
<th>he</th>
<th>drink</th>
<th>ink</th>
<th>likes</th>
<th>pink</th>
<th>think</th>
<th>wink</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

D1: He likes to wink, he likes to drink
D2: He likes to drink, and drink, and drink
D3: The thing he likes to drink is ink
D4: The ink he likes to drink is pink
D5: He likes to wink, and drink pink ink

5 5 3 5 2 1 2 DF
6 7 3 6 2 1 2 CF

IDF: formula

\[
idf(t) = \log_{10}\left(\frac{N}{df(t)}\right)
\]

- Log scale used to dampen the effect of IDF
- Suppose \(N = 1 \) million →

<table>
<thead>
<tr>
<th>term</th>
<th>df(t)</th>
<th>idf(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>calpurnia</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>animal</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>sky</td>
<td>1,000</td>
<td>3</td>
</tr>
<tr>
<td>fly</td>
<td>10,000</td>
<td>2</td>
</tr>
<tr>
<td>under</td>
<td>100,000</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1,000,000</td>
<td>0</td>
</tr>
</tbody>
</table>
TFIDF term weighting

- One the best known term weights schemes in IR
 - Increases with the number of occurrences within a document
 - Increases with the rarity of the term in the collection
- Combines TF and IDF to find the weight of terms
 \[w_{t,d} = (1 + \log_{10} tf(t,d)) \times \log_{10} \left(\frac{N}{df(t)} \right) \]
- For a query \(q \) and document \(d \), retrieval score \(f(q,d) \):
 \[\text{Score}(q,d) = \sum_{t \in q \cap d} w_{t,d} \]

Document/Term vectors with tfidf

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>5.25</td>
<td>3.18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>Brutus</td>
<td>1.21</td>
<td>6.1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>8.59</td>
<td>2.54</td>
<td>0</td>
<td>1.51</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1.54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>2.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1.51</td>
<td>0</td>
<td>1.9</td>
<td>0.12</td>
<td>5.25</td>
<td>0.88</td>
</tr>
<tr>
<td>worser</td>
<td>1.37</td>
<td>0</td>
<td>0.11</td>
<td>4.15</td>
<td>0.25</td>
<td>1.95</td>
</tr>
</tbody>
</table>

→ Vector Space Model
Vector Space Model

- Documents and Queries are presented as vectors
- Match \((Q, D) = \text{Distance between vectors}\)
- Example: \(Q = \text{Gossip Jealous}\)
- Euclidean Distance?
 \(\text{Distance between the endpoints of the two vectors}\)
- Large for vectors of diff. lengths
- Take a document \(d\) and append it to itself. Call this document \(d'\).
 - “Semantically” \(d\) and \(d'\) have the same content
 - Euclidean distance can be quite large

Angle Instead of Distance

- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.
 - Rank documents in increasing order of the angle with query
 - Rank documents in decreasing order of cosine (query, document)
- Cosine of angle = projection of one vector on the other
Length Normalization

- A vector can be normalized by dividing each of its components by its length – for this we use the \(L_2 \) norm:
 \[
 \| \vec{x} \|_2 = \sqrt{\sum_i x_i^2}
 \]
- Dividing a vector by its \(L_2 \) norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents \(d \) and \(d' \) (\(d \) appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

Example

- \(D_1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \Rightarrow \| \overrightarrow{D_1} \|_2 = \sqrt{1 + 9 + 4} = 3.74 \)

- \(D_1_{\text{normalized}} = \begin{bmatrix} 0.267 \\ 0.802 \\ 0.535 \end{bmatrix} \)

- \(D_2 = \begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix} \Rightarrow \| \overrightarrow{D_1} \|_2 = \sqrt{9 + 81 + 36} = 11.25 \)

- \(D_2_{\text{normalized}} = \begin{bmatrix} 0.267 \\ 0.802 \\ 0.535 \end{bmatrix} \)
Cosine “Similarity” (Query, Document)

- \tilde{q}_i is the tf-idf weight of term i in the query
- \tilde{d}_i is the tf-idf weight of term i in the document
- For normalized vectors:
 $$\cos(\tilde{q}, \tilde{d}) = \tilde{q} \cdot \tilde{d} = \sum_{i=1}^{\|V\|} q_i d_i$$
- For non-normalized vectors:
 $$\cos(\tilde{q}, \tilde{d}) = \frac{\tilde{q} \cdot \tilde{d}}{\|\tilde{q}\| \|\tilde{d}\|} = \frac{\tilde{q} \cdot \tilde{d}}{\sqrt{\sum_{i=1}^{\|V\|} q_i^2} \sqrt{\sum_{i=1}^{\|V\|} d_i^2}}$$

Algorithm

COSINESCORE(q)

1. float $Scores[\|N\|] = 0$
2. float $Length[\|N\|]$
3. for each query term t
4. do calculate $w_{t,q}$ and fetch postings list for t
5. for each pair(d, tf$_{t,d}$) in postings list
6. do $Scores[d] + = w_{t,d} \times w_{t,q}$
7. Read the array $Length$
8. for each d
10. return Top K components of $Scores[]$
TFIDF Variants

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) (natural)</td>
<td>(\text{tf}_{t,d})</td>
<td>(n) (no)</td>
</tr>
<tr>
<td>(1) (logarithm)</td>
<td>(1 + \log(\text{tf}_{t,d}))</td>
<td>(p) (prob idf)</td>
</tr>
<tr>
<td>a (augmented)</td>
<td>(0.5 + \frac{0.5 \times \text{tf}{t,d}}{\max(\text{tf}{t,d})})</td>
<td>(b) (boolean)</td>
</tr>
<tr>
<td>b (boolean)</td>
<td>(1) if (\text{tf}_{t,d} > 0) (0) otherwise</td>
<td>(L) (log ave)</td>
</tr>
</tbody>
</table>

- Many search engines allow for different weightings for queries vs. documents
- **SMART** Notation: use notation \(\text{ddd.qqq} \), using the acronyms from the table
- A very standard weighting scheme is: \(\text{lnc.ltc} \)

For Lab and CW

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) (natural)</td>
<td>(\text{tf}_{t,d})</td>
<td>(n) (no)</td>
</tr>
<tr>
<td>(1) (logarithm)</td>
<td>(1 + \log(\text{tf}_{t,d}))</td>
<td>(p) (prob idf)</td>
</tr>
<tr>
<td>a (augmented)</td>
<td>(0.5 + \frac{0.5 \times \text{tf}{t,d}}{\max(\text{tf}{t,d})})</td>
<td>(b) (boolean)</td>
</tr>
<tr>
<td>b (boolean)</td>
<td>(1) if (\text{tf}_{t,d} > 0) (0) otherwise</td>
<td>(L) (log ave)</td>
</tr>
</tbody>
</table>

“OR” operator, then:

\[
\text{Score}(q,d) = \sum_{t \in q \cap d} \left(1 + \log_{10} \text{tf}(t,d) \right) \times \log_{10} \left(\frac{N}{df(t)} \right)
\]
Summary of Steps:

- Represent the query as a weighted \textit{tf-idf} vector
- Represent each document as a weighted \textit{tf-idf} vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., $K = 10$) to the user

Retrieval Output

- For a query q_1, the output would be a list of documents ranked according to the $score(q_1, d)$

- Possible output format:

<table>
<thead>
<tr>
<th>Query id</th>
<th>Document id</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>710</td>
<td>0.9234</td>
</tr>
<tr>
<td>1</td>
<td>213</td>
<td>0.7678</td>
</tr>
<tr>
<td>1</td>
<td>103</td>
<td>0.6761</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>0.6556</td>
</tr>
<tr>
<td>1</td>
<td>501</td>
<td>0.4301</td>
</tr>
</tbody>
</table>
Resources

• Text book 1: Intro to IR, Chapter 6.2 → 6.4
• Text book 2: IR in Practice, Chapter 7

• Lab 3