Text Technologies for Data Science
INFR11145

Definitions

Instructor:
Walid Magdy

22-Sep-2021

Lecture Objectives

• Learn about main concepts in IR
 • Document
 • Information need
 • Query
 • Index
 • BOW
IR in a nutshell

User

Query

Search Engine

Documents

Relevant Documents

IR, basic form

• Given Query Q, find relevant documents D
Two main Issues in IR

About 293,000,000 results (0.79 seconds)

• Effectiveness
 • need to find relevant documents
 • needle in a haystack
 • very different from relational DBs (SQL)

• Efficiency
 • need to find them quickly
 • vast quantities of data (100’s billions pages)
 • thousands queries per second (Google, 63,000)
 • data constantly changes, need to keep up
 • compared with other NLP areas, IR is very fast

IR main components

• Documents
• Queries
• Relevant documents
Documents

- The element to be retrieved
 - Unstructured nature
 - Unique ID
 - N documents \rightarrow Collection

- web-pages, emails, book, page, sentence, tweets
- photos, videos, musical pieces, code
- answers to questions
- product descriptions, advertisements
- may be in a different language
- may not have words at all (e.g. DNA)

Queries

- Free text to express user’s information need
- Same information need can be described by multiple queries
 - Latest news on the hurricane in the US
 - North Carolina storm
 - Florence

- Same query can represent multiple information needs
 - Apple
 - Jaguar
Queries – different forms

- Web search → keywords, narrative …
- Image search → keywords, sample image
- QA → question
- Music search → humming a tune
- Filtering/recommendation → user’s interest/history
- Scholar search → structured (author, title ..)

- Advanced search
 \[\text{wsyn(0.9 \#field (title, \#phrase (homer,simpson)) 0.7 \#and (\#> (pagerank,3), \#ow3 (homer,simpson)) 0.4 \#passage (homer, simpson, dan, castellaneta)} \]

Relevance

- At an abstract level, IR is about:
 - does item D match item Q? …or…
 - is item D relevant to item Q?

- Relevance a tricky notion
 - will the user like it / click on it?
 - will it help the user achieve a task? (satisfy information need)
 - is it novel (not redundant)?

- Relevance = what is the topic about?
 - i.e. D,Q share similar “meaning”
 - about the same topic / subject / issue
What is the challenge in relevance?

- No clear semantics, contrast:
 - “William Shakespeare”
 - Author history’s? list of plays? a play by him?

- Inherent ambiguity of language:
 - synonymy: “North Carolina storm” = “Florence hurricane”
 - polysemy: “Apple”, “Jaguar”

- Relevance highly subjective
 - Relevance: yes/no
 - Relevance: perfect/excellent/good/fair/bad

- On the web: counter SEOs / spam

Relevant Items are Similar

- Key idea:
 - Use similar vocabulary \(\rightarrow\) similar meaning
 - Similar documents relevant to same queries

- Similarity
 - String match
 - Word overlap
 - P(D|Q) \(\rightarrow\) retrieval model
IR vs. DB

<table>
<thead>
<tr>
<th></th>
<th>Databases</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>What we’re retrieving</td>
<td>Structured data. Clear semantics based on a formal model.</td>
<td>Mostly unstructured. Free text with some metadata.</td>
</tr>
<tr>
<td>Queries we’re posing</td>
<td>Formally-defined (relational algebra, SQL). Unambiguous.</td>
<td>Free text (“natural language”), Boolean</td>
</tr>
<tr>
<td>Results we get</td>
<td>Exact (always “correct”)</td>
<td>Imprecise (need to measure relevance)</td>
</tr>
<tr>
<td>Interaction with system</td>
<td>One-shot queries.</td>
<td>Interaction is important.</td>
</tr>
</tbody>
</table>

How IR sees documents?

- **Information retrieval**
 - **Language**
 - **Query**
 - **Document**
 - **Search**
 - **Evaluation**

Walid Magdy, TTDS 2021/2022

THE UNIVERSITY OF EDINBURGH

Walid Magdy, TTDS 2021/2022
Bag-of-words trick

- Can you guess what this is about:
 - per is salary hour €4,200 Neymar’s
 - obesity French is of full cause and fat fries

- Re-ordering doesn’t destroy the topic
 - individual words – “building blocks”
 - “bag” of words: a “composition” of “meanings”

Bag-of-words trick

- Most search engines use BOW
 - treat documents, queries as bags of words
- A “bag” is a set with repetitions
 - match = “degree of overlap” between D, Q
- Retrieval models
 - statistical models (function) that use words as features
 - decide which documents most likely to be relevant
- What should be the top results for Q?
 - BOW makes these models tractable
Bag-of-words: Criticism

- word meaning lost without context
 - True, but BOW doesn’t really discard context

- what about negations, etc.?
 - \{no, climate change is real\} vs. \{climate change is no real\}

- does not work for all languages
 - No natural “word” unit for Chinese, images, music
 - Solve by “segmentation” or “feature induction”

IR Black Box

[Diagram of IR Black Box]

Query Representation
- Representation Function
- Comparison Function
- Index
- BOW
- Hits
- online/offline

Retrieval Model

Query

Documents

Tamer Elsayed, QU
Systems perspective on IR

- **Indexing Process:** *(offline)*
 → get the data into the system
 - acquire the data from crawling, feeds, etc.
 - store the originals (if needed)
 - transform to BOW and “index”

- **Search (retrieval) Process:** *(online)*
 → satisfy users’ requests
 - assist user in formulating query
 - retrieve a set of results
 - help user browse / re-formulate
 - log user’s actions, adjust retrieval model
Search Process

- Help user formulate the query by suggesting what he could search for.
- Fetch a set of results, present to the user.
- Log user’s actions: clicks, hovering, giving up.
- Iterate!

Summary

- Information Retrieval (IR): core technology
 - Selling point: IR is very fast, provides context
- Main issues: effectiveness and efficiency
- Documents, queries, relevance
- Bag-of-words trick
- Search system architecture:
 - Indexing: get data into the system
 - Searching: help users find relevant data
Resources

- Search Engines: Information Retrieval in Practice, chapter 1 & 2

- Lab 0:
 - You have to be confident doing it!
 - If you have trouble finishing it, think twice before committing to the course

Questions

- Next time:
 - Laws of text (Zipf ….)
 - Vector space models

- Skill to learn by next time:
 - Read text file from disk
 - Read word by word

- Videos:
 - The Zipf Mystery, Vsauce

- Tools:
 - (Perl) regular expressions: https://perldoc.perl.org/perlre.html