Introduction:
This report describes the implementation of three algorithms for image retrieval, presents the best algorithm based on **Latent Semantic Indexing** (MAP = 78%) and compares it to baseline.

Description of the overlap and tf.idf algorithms:
I implemented the overlap algorithm in a naive way – for each query computing the overlap with each document. I implemented the tf.idf algorithm in two ways – in a naive way (for each query and document pair computing the entire tf.idf formula), and using the sparse matrices (similar to the LSI algorithm, but without SVD decomposition. The time taken was reduced from 4 minutes to 12 seconds by using sparse matrices and pre-computing the tf.idf for each word-document pair.

Description of the Latent Semantic Indexing algorithm (best):
- Vocabulary of all the words is constructed by taking a set of words from all the documents.
- Then a sparse matrix (vocabulary x documents) lookup (such that each (i,j) entry corresponds to the count of occurrences of the word i in document j) is constructed.
- tf.idf is precomputed for each element (for each word for each document) in lookup and lookup is transformed using an SVD decomposition up to k significant eigenvalues (uses the following library function: scipy.sparse.linalg.svds).
- The queries are transformed in the decomposed space (where each (i,j) entry corresponds to the count of occurrences of the word i in the query j).
- Then the matrix of queries is simply multiplied with the lookup matrix to obtain a similarity value for each query and document pair.

Discussion:
I chose to implement the LSI algorithm after having a look at the documents. They contain words in multiple languages, so the ‘real’ vector space is smaller than the vector space span by the vocabulary, as a same semantic token is represented by multiple languages as different words. LSI reduces the vector space, therefore I thought it is a suitable algorithm to implement for this task. I chose the parameter k (number of dimensions in transformed vector space) to be 140, which gave the best performance on the training set. Figure 1 shows that there is hardly any difference for the values of k between 120 and 160. The Sign test was also insignificant for a comparison of k=120 and k=140 (p = .09). Note that as k approaches the vocabulary size, the MAP converges to the MAP value of the tf.idf algorithm.

To test the significance of my results I used a sign test (as described in the lecture). The null hypothesis (that the best algorithm is no better than the baseline (tf.idf)) was rejected with very high certainty (p < 10^-12). Therefore the best algorithm is significantly better than the baseline.

The algorithm could be further improved by a combination of multiple prediction systems, such as Pseudo-relevance feedback and statistical synonyms.

Results:
The Mean Average Precision for the three algorithms implemented is displayed in Table 1:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>MAP [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>overlap</td>
<td>18.72</td>
</tr>
<tr>
<td>tf.idf</td>
<td>34.33</td>
</tr>
<tr>
<td>best (k=140)</td>
<td>77.81</td>
</tr>
</tbody>
</table>

Table 1: Mean Average Precision
Figure 1: Different values of k for best algorithm. Optimal value seems to be between 120 and 160.

Figure 2: Recall-Precision plot for the three algorithms implemented. Algorithm best uses $k=140$.