
A taste of linear logic

?

Philip Wadler

Department of Computing Science, University of Glasgow, G12 8QQ, Scotland

(wadler@dcs.glasgow.ac.uk)

Abstract. This tutorial paper provides an introduction to intuitionistic

logic and linear logic, and shows how they correspond to type systems

for functional languages via the notion of `Propositions as Types'. The

presentation of linear logic is simpli�ed by basing it on the Logic of Unity.

An application to the array update problem is briey discussed.

1 Introduction

Some of the best things in life are free; and some are not.

Truth is free. Having proved a theorem, you may use this proof as many

times as you wish, at no extra cost. Food, on the other hand, has a cost. Having

baked a cake, you may eat it only once. If traditional logic is about truth, then

linear logic is about food.

In traditional logic, if a fact is used to conclude another fact, the �rst fact is

still available. For instance, given that A impliesB and given A, one may deduce

both A and B. In symbols, this is written as the judgement

A! B; A ` A�B(i)

where A! B is read `A implies B', and A�B is read `A and B'. (It will shortly

become apparent why � is written for `and'.) The assumption A is used twice

in the proof of this judgement, and that is reasonable because truth is free.

Traditional logic comes in many forms: the one we shall concentrate on is

intuitionistic logic. This logic is of special interest because its terms are in one-

to-one correspondence with a typed functional programming language. This cor-

respondence goes by the name `Curry-Howard isomorphism', after the logicians

who discovered it, or by `Propositions as types', because it views propositions of

logic as types in a functional program. Under this correspondence, one proof of

judgement (i) may be written as the program

f : A! B; x : A ` (x; f (x)) : A� B(ii)

where f is a free variable denoting a function of type A ! B, and x is a free

variable denoting a value of type A, and (x; f (x)) is a term denoting a pair of

?

This is a slightly revised version of an invited lecture delivered at Mathematical

Foundations of Computer Science, Gdansk, August-September 1993, Springer Verlag

Lecture Notes in Computer Science 711.



type A�B. The �rst component of the pair is the value x, the second component

is the result of applying function f to value x. The free variable x appears twice

in the term, just as assumption A is used twice in the proof of the corresponding

judgement. This is reasonable if the value in x costs little to copy, so the name

`free' variable is doubly appropriate.

But not all things in life are free. To capture this notion, the logician Jean-

Yves Girard devised linear logic, a `resource conscious' logic. In linear logic,

assumptions may not be freely copied, nor may they be foolishly discarded: each

assumption is used exactly once. It is no longer the case that given A implies B

and given A one can deduce both A and B. In symbols, this is written as the

non-judgement

hA ��Bi; hAi 6 ` A
 B(iii)

where A��B is read `consuming A yields B' and A
B is read `both A and B',

and angle brackets are written around each assumption to indicate that it must

be used exactly once. Taking A to be the proposition `I have a cake', and B to

be the proposition `I am full', we discover that one cannot have one's cake and

eat it too.

Just as lambda calculus corresponds to intuitionistic logic, there is a pro-

gramming calculus that correspond to linear logic. Corresponding to (iii) is the

program

hf : A��Bi; hx : Ai 6 ` hx; f hxii : A 
B:(iv)

If f was a function that takes a cake into a feeling of fullness, and x was a cake,

then hx; f hxii is a pair consisting of the original cake and the fullness resulting

from eating it. Just as judgement (iii) is invalid, program (iv) is ill-typed: the

program that keeps a cake and eats it too has a type error.

Such a type system has less fanciful uses. It can allow for �ne control over the

e�cient use of storage, and in particular for a new answer to the old question of

how to handle arrays e�ciently in a functional language.

This paper is intended as a general introduction to intutionistic logic and the

Curry-Howard isomorphism, and to linear logic and some of its applications in

functional programming. The presentation of linear logic is simpli�ed by basing

it on Girard's Logic of Unity, a re�nement of the concept of linear logic.

The organisation follows the development above. Section 1 reviews intuition-

istic logic. Section 2 describes how the Curry-Howard correspondence relates

this logic to lambda calculus. Section 3 introduces linear logic. Section 4 uses

the Curry-Howard correspondence to derive a linear lambda calculus, and out-

lines its applications. Section 5 discusses related work and concludes.

It is worth noting what is not covered. First, the paper concentrates on the

application of linear logic to functional programming, and ignores other intrigu-

ing applications such as logic programming or concurrent programming. Second,

the paper describes only intuitionistic linear logic, and ignores the related theory

of classical linear logic. However, it is hoped that this paper will put the reader

in a better position to appreciate the literature on the subject.

As this paper is mainly tutorial in nature, it is to a large extent a gloss on the

work of others. It is a pleasure to acknowledge here some of the people who have



taught me these ideas: Jean-Yves Girard, Samson Abramsky, Martin Hyland,

Yves Lafont, Gordon Plotkin, Vaughn Pratt, and Robert Seely.

2 Intuitionistic logic

Most computer scientists have seen one or another of the many ways of for-

mulating logic. The version presented here is based on natural deduction, and

specially emphasises the Contraction and Weakening rules, which are the key to

understanding linear logic.

A proposition is built up from propositional constants using the combining

forms implies, written !, and, written �, and or, written +. Let A;B;C range

over propositions, and X range over propositional constants. Then the grammar

of propositions is as follows.

A;B;C ::= X j A! B j A� B j A+ B

An assumption is a sequence of zero or more propositions. Let �;�;� range

over assumptions. A judgement has the form � ` A, meaning that from assump-

tions � one can conclude proposition A.

A rule consists of zero or more judgements written above a line, and one

judgement written below. If all the judgements above the line are derivable,

then the judgement below is derivable also. Note that there are three di�erent

levels of implication: ! in a proposition, ` in a judgement, and the line in a

rule.

Id

A ` A

�; � ` A

Exchange

�; � ` A

�; A; A ` B

Contraction

�; A ` B

� ` B

Weakening

�; A ` B

�; A ` B

!-I

� ` A! B

� ` A! B � ` A

!-E

�; � ` B

� ` A � ` B

�-I

�; � ` A�B

� ` A� B �; A; B ` C

�-E

�; � ` C

� ` A

+-I

1

� ` A+ B

� ` B

+-I

2

� ` A+B

� ` A+ B �; A ` C �; B ` C

+-E

�; � ` C

Fig. 1. Intuitionistic logic

The rules for intuitionistic logic are shown in Figure 1. They come in three

groups.



First is the lone axiom, Id, the only rule with no judgements above the line.

This rule expresses tautology: from hypotheses A one can deduce conclusion A.

Second are the three structural rules, Exchange, Contraction, and Weaken-

ing. Exchange expresses that the order of hypotheses is irrelevant, Contraction

expresses that any hypothesis may be duplicated, and Weakening expresses that

any hypothesis may be discarded.

Third are the logical rules. These come in pairs. In the introduction rule !-I

a judgement ending in a proposition formed with ! appears below the line,

while in the elimination rule !-E a judgment ending in a proposition formed

with ! appears above the line. Similarly for the other logical connectives, �

and +.

Each rule has a straightforward logical reading. For instance, !-I expresses

the `deduction theorem': if from assumptions � and A one can deduce B, then

from assumption � alone one can deduce A implies B. Similarly,!-E expresses

`modus ponens': if from assumptions � one can deduce that A implies B, and

from assumptions � one can deduce A, then from assumptions � and � one can

deduce B.

Derivations can be written as proof trees. The judgement derived is at the

root, each branch represents a use of a rule, and the leaves are axioms. Here is

a tree deriving the judgement A! B; A ` A �B.

Id

A ` A

Id

A! B ` A! B

Id

A ` A

!-E

A! B; A ` B

�-I

A; A! B; A ` A �B

Exchange

A! B; A; A ` A �B

Contraction

A! B; A ` A� B

In this proof, the assumption A is used twice, once to conclude A itself, and once

to conclude B. The double usage of A is justi�ed by Contraction.

2.1 Alternative rules for conjunction

The rules for conjunction may also be expressed in an alternative form.

� ` A � ` B

�-I

0

� ` A� B

� ` A �B

�-E

0

1

� ` A

� ` A� B

�-E

0

2

� ` B

These are equivalent to the previous rules. We will see that the new rules may

be derived from the old, plus Weakening and Contraction. Furthermore, the old

rules may be derived from the new, plus Weakening, Contraction,!-I, and!-E.

The new �-I

0

is derived from the old �-I together with Contraction.

� ` A � ` B

�-I

�; � ` A� B

=========== Contraction

� ` A� B



The double line stands for one use of Contraction for each assumption in � , and

also hides some uses of Exchange to bring matching hypotheses together. The

Exchange rule is so dull that its uses will not usually be mentioned.

The new �-E

0

1

is derived from the old �-E plus Weakening.

� ` A �B

Id

A ` A

Weakening

A; B ` A

�-E

� ` A

One might think that the Weakening rule is a little silly { why bother to make

an extra assumption? { but this proof demonstrates its utility. The rule �-E

0

2

is

derived similarly.

The other way around, �-I can be derived from �-I

0

and Weakening.

� ` A

======= Weakening

�; � ` A

� ` B

======= Weakening

�; � ` B

�-I

0

�; � ` A� B

The double lines stand for one use of Weakening for each assumption in � and

�, and also hide some uses of Exchange.

Finally, �-E can be derived from �-E

0

1

and �-E

0

2

togther with Contraction,

!-I, and !-E.

�; A; B ` C

!-I

�; A ` B ! C

!-I

� ` A! B ! C

� ` A �B

�-E

0

1

� ` A

!-E

�; � ` B ! C

� ` A�B

�-E

0

2

� ` B

!-E

�; �; � ` C

========== Contraction

�; � ` C

Note that the hypothesis � ` A�B is used twice in this proof, the multiple uses

of � being reduced to a single use by Contraction.

The key di�erence of linear logic is that it restricts the use of Contraction

and Weakening, so the two di�erent rule sets are no longer equivalent. Instead

of a single connective �, there will be two connectives, 
 and &, one with rules

analogous to �-I and �-E, and the other with rules analogous to �-I

0

, �-E

0

1

,

and �-E

0

2

.

2.2 An alternative to structural rules

The rules for Exchange, Weakening, and Contraction may appear unfamiliar to

some readers, because logic is often presented in a di�erent form that hides these



rules.

Id

0

�; A; � ` A

�; A ` B

!-I

� ` A! B

� ` A! B � ` A

!-E

0

� ` B

The rule Id

0

may be derived from Id, Weakening, and Exchange, and the rule

!-E

0

may be derived from !-E, Contraction, and Exchange. The system con-

sisting of Id

0

,!-I, and!-E

0

derives exactly the same judgements as the system

consisting of Id, Exchange, Contraction, Weakening, !-I, and !-E. The other

logical rules can be similarly modi�ed, yielding an equivalent of the full system.

This system is convenient in that it eliminates all concern with the structural

rules; but it has the disadvantage that it obscures the role of Contraction and

Weakening.

2.3 Commuting conversions for structural rules

One lesson of the alternative system is that the order in which the structural

rules are applied is irrelevant. This can be captured in our system by commuting

conversions, which de�ne an equivalence relation on proofs, written (). Here

are the commuting conversions for Contraction with the rule !-E.

�; C; C ` A! B

Cont

�; C ` A! B � ` A

!-E

�; C; � ` B

()

�; C; C ` A! B � ` A

!-E

�; C; C; � ` B

Cont

�; C; � ` B

� ` A! B

�; C; C ` A

Cont

�; C ` A

!-E

�; �; C ` B

()

� ` A! B �; C; C ` A

!-E

�; �; C; C ` B

Cont

�; �; C ` B

There are similar commuting conversions for Exchange, Contraction, and Weak-

ening with each of the structural and logical rules.

As was already noted, a judgement is derivable in the system with explicit

structural rules if and only if it is derivable in the system with structural rules

`built in'. With the commuting conversions, one can show not merely that the

two systems derive the same judgements, but that proofs in the two systems are

equivalent.

2.4 Proof reduction

A judgement may have several distinct derivations. Some of these may repre-

sent profoundly di�erent proofs, while others may represent trivial variations.

In particular, there is little point in having an introduction rule for a connective

followed immediately by an elimination rule for the same connective.



Here is a sketch of a proof that introduces the proposition A ! B, only to

immediately eliminate it.

A ` A � � �

�

�

�

u

�; A � � � ` B

===========

�; A ` B

!-I

� ` A! B

�

�

�

t

� ` A

!-E

�; � ` B

Here t labels a subtree of the proof, ending in the judgement � ` A, and u labels

another subtree, ending in the judgement �; A ` B. Thanks to Weakening and

Contraction, the assumption A may be used zero or more times in proof u,

as indicated by ellipses. Each use corresponds to one appearance of the leaf

A ` A, again as indicated by ellipses. The commuting conversions allow all uses

of Weakening and Contraction on A in u to be moved to the end of the subtree,

where they are indicated by the double line.

The unnecessary proposition A ! B can be eliminated by replacing each

occurrence of the leaf A ` A in the proof u by a copy of the proof t of the

judgement � ` A.

�

�

�

t

� ` A � � �

�

�

�

u

�; � � � � ` B

===========

�; � ` B

The Weakenings and Contractions previously performed on assumption A now

need to be performed once for each assumption in �.

The replacement of the �rst proof by the second proof is called a proof re-

duction. If the assumption A is used more than once, then the proof t will be

copied many times; so reduction does not always make a proof smaller. However,

reduction is guaranteed to eliminate the unnecessary occurrence of A! B from

the proof.

Similar proof reductions apply for the other connectives as well. Figure 2

shows the reduction rules for ! and � and one of the two reduction rules for +

(the other is almost identical). Reductions form a partial order, denoted by =).

A proof to which no reductions apply is said to be in normal form. Remarkably,

every proof has a normal form, and this normal form is unique modulo the

commuting conversions.

A proof in normal form contains no extraneous propositions. More precisely,

if a proof of a judgement � ` A is in normal form, every proposition in the proof

is a subformula of � or A. (The subformulas are de�ned in the obvious way; for

instance, the subformulas of A! B are A! B itself plus the subformulas of A

and B.)

For example, consider the judgement A! B; A ` B �B. One way to prove

this is to use !-I and Contraction to prove ` B ! B � B, and then use !-E



A ` A � � �

�

�

�

u

�; A � � � ` B

===========

�; A ` B

!-I

� ` A! B

�

�

�

t

� ` A

!-E

�; � ` B

=)

�

�

�

t

� ` A � � �

�

�

�

u

�; � � � � ` B

===========

�; � ` B

�

�

�

t

� ` A

�

�

�

u

� ` B

�-I

�; � ` A� B

A ` A � � � B ` B � � �

�

�

�

v

�; A � � � ; B � � � ` C

==================

�; A; B ` C

�-E

�; �; � ` C

=)

�

�

�

t

� ` A � � �

�

�

�

u

� ` B � � �

�

�

�

v

� � � � ; � � � � ; � ` C

======================

�; �; � ` C

�

�

�

t

� ` A

+-I

1

� ` A+B

A ` A � � �

�

�

�

v

�; A � � � ` C

============

�; A ` C

B ` B � � �

�

�

�

w

�; B � � � ` C

============

�; B ` C

+-E

�; � ` C

=)

�

�

�

t

� ` A � � �

�

�

�

v

� � � � ; � ` C

============

�; � ` C

Fig. 2. Proof reduction for intuitionistic logic

to discharge the antecedent B with a proof of A! B; A ` B. Here is the proof

in full.

Id

B ` B

Id

B ` B

�-I

B; B ` B � B

Contraction

B ` B �B

!-I (y)

` B ! (B � B)

Id

A! B ` A! B

Id

A ` A

!-E

A! B; A ` B

!-E (y)

A! B; A ` B �B

This proof contains a proposition, B ! B � B, that is not a subformula of the

judgement proved. It also contains an introduction rule immediately followed by

an elimination rule, each marked with (y). Applying the reduction rule for !



results in the following proof.

Id

A! B ` A! B

Id

A ` A

!-E

A! B; A ` B

Id

A! B ` A! B

Id

A ` A

!-E

A! B; A ` B

�-I

A! B; A; A! B; A ` B �B

======================== Contraction

A! B; A ` B � B

Contraction on B in the �rst proof has been replaced in the second by copying

the proof of A! B; A ` B twice, and applying Contraction to the assumptions

A! B and A. The second proof is in normal form, and does indeed satisfy the

subformula property.

3 Intuitionistic terms

We now augment our judgements to contain terms. From the logicians' point of

view, terms encode proofs. From the computer scientists' point of view, terms

are a programming language for which the corresponding logic provides a type

system.

In a constructive logic, propositions can be read as types, and proofs read as

terms of the corresponding type. Implication is read as function space: a proof

of A! B is a function that takes any proof of A into a proof of B. Conjunction

is read as cartesian product: a proof of A�B is a pair consisting of a proof of A

and a proof of B. Disjunction is read as disjoint sum: a proof of A+B is either

a proof of A or a proof of B. Henceforth type will be a synonym for proposition.

Terms encode the rules of the logic. There is one term form for the axiom Id,

namely variables, and one term form for each of the logical rules. An introduction

rule corresponds to a term that constructs a value of the corresponding type,

while an elimination rule corresponds to a term that deconstructs a value of the

corresponding type. There are no term forms for the structural rules, Exchange,

Contraction, and Weakening. Let x; y; z range over variables, and s; t; u; v; w

range over terms. The grammar of terms is as follows.

s; t; u; v; w ::= x

j �x: u j s (t)

j (t; u) j case s of (x; y)! v

j inl (t) j inr (u) j case s of inl (x)! v; inr (y) ! w

Assumptions are now written in the form

x

1

: A

1

; : : : ; x

n

: A

n

where x

1

; : : : ; x

n

are distinct variables, A

1

; : : : ; A

n

are types, and n � 0. As

before, let � and � range over assumptions. Write �;� to denote the concate-

nation of assumptions; an implicit side condition of such a concatenation is that

� and � contain distinct variables.



Judgements are now written in the form � ` t : A. One can think of � as a

declaration specifying the types of the free variables of term t, which itself has

type A.

Each rule is decorated with variables and terms, as shown in Figure 3.

Id

x : A ` x : A

�; � ` t : A

Exchange

�; � ` t : A

�; y : A; z : A ` u : B

Contraction

�; x : A ` u[x=y; x=z] : B

� ` u : B

Weakening

�; x : A ` u : B

�; x : A ` u : B

!-I

� ` �x: u : A! B

� ` s : A! B � ` t : A

!-E

�; � ` s (t) : B

� ` t : A � ` u : B

�-I

�; � ` (t; u) : A�B

� ` s : A� B �; x : A; y : B ` v : C

�-E

�; � ` case s of (x; y)! v : C

� ` t : A

+-I

1

� ` inl (t) : A+B

� ` u : B

+-I

2

� ` inr (u) : A+ B

� ` s : A+ B �; x : A ` v : C �; y : B ` w : C

+-E

�; � ` case s of inl (x)! v; inr (y)! w : C

Fig. 3. Intuitionistic types

If a concatenation of the form �;� appears in a rule, then � and � must

contain distinct variables. Thus in the !-I rule, the variable x may not appear

in � , so there is no shadowing of variables.

A variable in the assumption can appear more than once in a term only if

Contraction is used. In the Contraction rule, the notation t[x=y; x=z] stands for

term t with variable x replacing all occurrences of variables y and z. Similarly,

a variable in the assumption must appear in the corresponding term unless

Weakening is used.

Here is the proof of the judgement A! B; A ` A�B, decorated with terms.

Id

y : A ` y : A

Id

f : A! B ` f : A! B

Id

z : A ` z : A

!-E

f : A! B; z : A ` f (z) : B

�-I

y : A; f : A! B; z : A ` (y; f (z)) : A �B

Exchange

f : A! B; y : A; z : A ` (y; f (z)) : A �B

Contraction

f : A! B; x : A ` (x; f (x)) : A �B



The judgement at the root of this tree encodes the entire proof tree. In general,

the judgement at the bottom of a labeled proof tree uniquely encodes the entire

tree, modulo the commuting conversions for the structural rules.

3.1 Alternate terms for conjunction

The alternate rules for conjunction elimination correspond to alternate term

forms for deconstructing pairs, fst (s) and snd (s).

� ` s : A� B

�-E

0

1

� ` fst (s) : A

� ` s : A �B

�-E

0

2

� ` snd (s) : B

Just as the various rules can be expressed in terms of each other, the various

terms can be de�ned in terms of each other. The terms `fst' and `snd' can be

de�ned using `case'.

fst (s) = case s of (x; y)! x

snd (s) = case s of (x; y)! y

Conversely, the term `case' can be de�ned using `fst' and `snd'.

case s of (x; y)! v = (�x: �y: v) (fst (s)) (snd (s))

These de�nitions can be read o� from the corresponding proof trees seen previ-

ously.

3.2 Term reduction

Since terms encode proofs, the proof reductions seen previously can be encoded

more compactly as term reductions. The operation of substituting a proof sub-

tree for a leaf becomes the operation of substituting a term for a variable.

(�x: u) (t) =) u[t=x]

case (t; u) of (x; y)! v =) v[t=x; u=y]

case inl (t) of inl (x)! v; inr (y)! w =) v[t=x]

case inr (u) of inl (x)! v; inr (y)! w =) w[u=y]

These rules are familiar to any programmer; in particular, the �rst is the beta

reduction rule of lambda calculus.

The properties of proof reduction carry over into properties of term reduction.

The correspondence of proof reductions with term reductions guarantees that

reducing a well-typed term yields a well-typed term; this is called the Subject

Reduction property. The uniqueness of normal forms for proofs corresponds to

the uniqueness of normal forms for terms, which is analogous to the Church-

Rosser theorem for untyped lambda calculus. The existence of normal forms

for proofs means that every reduction sequence starting with a well-typed term

eventually terminates; a property which certainly does not hold for untyped

lambda calculus.

It is fascinating to observe that the notion of proof reduction, which was

formulated to demonstrate the properties of proof systems, corresponds precisely

to term reduction, which was formulated as a model of computation. This is the

essence of the Curry-Howard isomorphism.



3.3 Fixpoints

Since every typed term has a normal form, the typed term calculus is strictly

less expressive than untyped lambda calculus. To regain the power to express

every computable function, one adds for each type A a constant

�x : (A! A)! A

with the reduction rule

�x (f) =) f (�x (f)):

A term containing this constant may not have a normal form, even if it is well

typed. In particular, for every type A, the judgement ` �x (�x: x) : A is deriv-

able, but this term has no normal form. Perhaps that is just as well, since this

judgement corresponds to a proof that any proposition A is true!

4 Linear logic

Traditional logic encourages reckless use of resources. Contraction proigately

duplicates assumptions, Weakening foolishly discards assumptions. This makes

sense for logic, where truth is free; and it makes sense for some programming

languages, where copying a value is as cheap as copying a pointer. But it is not

always sensible. Linear logic encourages more careful use of resources. It is a logic

for the 90s. If you lean to the right, view it as a logic of realistic accounting: no

more free assumptions. If you lean to the left, view it as an eco-logic: resources

must be conserved.

The obvious thing to do is to simply get rid of Contraction and Weakening

entirely, but that is perhaps too severe. Our desire is to �nd a logic that allows

control over Contraction and Weakening, but is still powerful enough that tradi-

tional intuitionistic logic may be embedded within it. In programming language

terms, this corresponds to a language that allows control over duplication and

discarding for some variables, but is still powerful enough that all traditional

programs may be expressed within it.

So rather than getting rid of Contraction and Weakening entirely, we shall

`bell the cat'. If Contraction or Weakening are used in a proof, then this will be

explicitly visible in the proposition proved.

The absence of Contraction and Weakening profoundly changes the nature

of the logical connectives. Implication is now written A �� B and pronounced

`consume A yielding B'. (The symbol �� on its own is pronounced `lollipop'.) As

noted previously, in the absence of Contraction and Weakening, there are two

distinct ways to formulate conjunction, corresponding to two distinct connectives

in linear logic. These are written A
B, pronounced `both A and B', and A&B,

pronounced `choose from A and B'. (The symbols 
 and & are pronounced

`tensor' and `with'.) Disjunction is written A � B and still pronounced `either

A or B'. Finally, a new form of proposition is introduced to indicate where

Contraction or Weakening may be used. It is written !A and pronounced `of

course A'. (The symbol ! is pronounced `pling' or `bang!'.)



As before, let A;B;C range over propositions, andX range over propositional

constants. The grammar of linear propositions is as follows.

A;B;C ::= X j A ��B j A 
B j A &B j A �B j !A

The particular logical system that we will study is based on Girard's Logic of

Unity, which is a re�nement of linear logic. This achieves some signi�cant tech-

nical simpli�cations by using two forms of assumption. One form of assumption,

called linear, does not allow Contraction or Weakening, and is written in angle

brackets, hAi. The other form of assumption, called intuitionistic, does allow

Contraction and Weakening, and is written in square brackets, [A].

As we shall see, an assumption of the form h!Ai is in a sense equivalent to

an assumption of the form [A]. However, they di�er in that a linear assumption

{ even one of the form h!Ai { must be used exactly once in a proof, while an

intuitionistic assumption may be used any number of times.

As before, let �;� range over sequences of zero or more assumptions, which

may be of either sort. Write [� ] for a sequence of zero or more intuitionistic

assumptions.

Judgements, as before, are written in the form � ` A. It is only assumptions

that are labeled with angle or square brackets { these brackets only appear to

the left of `, never to the right.

The rules of linear logic are shown in Figure 4. There are now two axioms,

hIdi for a linear assumption and [Id] for an intuitionistic assumption. As one

might expect, the rules Contraction, Weakening, and the logical rules for ! use

intuitionistic assumptions. The logical rules for the other conectives, ��, 
, &,

and �, all use linear assumptions.

Apart from the switch to linear assumptions, the logical rules for ��, 
, and

� are identical to the logical rules for !, �, and +; and the logical rules for &

are identical to the alternate logical rules for �. Note that 
-I uses two distinct

assumption lists, while &-I uses the same list twice.

Before looking in detail at the rules for !, let's take a moment to explore the

meaning other logical connectives.

4.1 A logic of resources

We can read the new rules in terms of combinations of resources. Take A to be

the proposition `I have ten zlotys', B to be the proposition `I have a pizza', and

C to be the proposition `I have a cake'. Adding to our logic the axioms

hAi ` B hAi ` C

expresses that for ten zlotys I may buy a pizza, and for ten zlotys I may buy a

cake. Instantiating 
-I yields

hAi ` B hAi ` C


-I

hAi; hAi ` B 
C



hIdi

hAi ` A

[Id]

[A] ` A

�; � ` A

Exchange

�; � ` A

�; [A]; [A] ` B

Contraction

�; [A] ` B

� ` B

Weakening

�; [A] ` B

[� ] ` A

!-I

[� ] ` !A

� ` !A �; [A] ` B

!-E

�; � ` B

�; hAi ` B

��-I

� ` A��B

� ` A�� B � ` A

��-E

�; � ` B

� ` A � ` B


-I

�; � ` A
B

� ` A
 B �; hAi; hBi ` C


-E

�; � ` C

� ` A � ` B

&-I

� ` A&B

� ` A&B

&-E

1

� ` A

� ` A& B

&-E

2

� ` B

� ` A

�-I

1

� ` A� B

� ` B

�-I

2

� ` A�B

� ` A�B �; hAi ` C �; hBi ` C

�-E

�; � ` C

Fig. 4. Linear logic

meaning that for twenty zlotys I can buy both a pizza and a cake. Instantiating

&-I yields

hAi ` B hAi ` C

&-I

hAi ` B & C

meaning that for ten zlotys I can buy whichever I choose from a cake and a

pizza. Instantiating �-I

1

yields

hAi ` B

�-I

1

hAi ` B � C

meaning that for ten zlotys I can buy either a pizza or a cake. But I no longer

have a choice: the proof implies that I must buy a pizza. If the bakery closes, so

that hAi ` C is no longer an axiom, then hAi ` B&C is no longer provable, but

hAi ` B � C remains provable as long as the pizzeria remains open.

Take D to be the proposition `I am happy'. Then hB 
 Ci ` D expresses

that I will be happy given both a pizza and a cake; and hB & Ci ` D expresses

that I will be happy given my choice from a pizza and a cake; and hB �Ci ` D

expresses that I will be happy given either a pizza or a cake, I don't care which.

For any A andB, one can prove hA&Bi ` A�B. Indeed, there are two proofs,

one choosing A and one choosing B. But there is no way to prove the converse,



hA� Bi ` A& B. Furthermore, neither hA
 Bi ` A& B nor hA &Bi ` A 
B

is provable.

Thanks to the absence of Contraction for linear assumptions, it is impossible

to prove hAi ` A 
 A; disappointingly, ten zlotys cannot magically become

twenty. Thanks to the absence of Weakening, it is impossible to prove hA
Ai `

A; reassuringly, twenty zlotys will not mysteriously become ten.

4.2 Unlimited resources

A linear assumption, hAi, can be thought of as supplying exactly one occurrence

of A, while an intuitionistic assumption, [A], can be thought of as supplying an

unlimited number of occurrences ofA: multiple occurrences ofA may be supplied

if Contraction is used, and no occurrences of A may be supplied if Weakening is

used. Taking A to be `I have ten zlotys', then the linear assumption hAi holds

if I have a ten zloty note in my pocket, while the intuitionistic assumption [A]

holds if I have an unlimited supply of ten zloty notes.

It is instructive to compare the two axioms.

hIdi

hAi ` A

[Id]

[A] ` A

The axiom on the left says that if I have ten zlotys in my pocket, I can reach in

and extract ten zlotys. The axiom on the right says that if I have an inde�nitely

large supply of zloty notes, then from it I may withdraw a single ten zloty note.

If �; hAi ` B is provable, then �; [A] ` B is also provable.

�; hAi ` B

��-I

� ` A ��B

[Id]

[A] ` A

��-E

�; [A] ` B

Taking hAi ` B to mean that for ten zlotys I can buy a pizza, it follows that

[A] ` B, so if I have an inde�nitely large supply of ten zloty notes then I can

still buy a pizza.

Since the logical connectives are de�ned in terms of linear assumptions, some

method is required to turn an intuitionistic assumption into a linear one. This

is supplied by the connective !. An intuitionistic assumption [A] is equivalent

to a linear assumption h!Ai. Thus, the proposition !A holds when there is an

unlimited supply of A.

In the !-I rule, [� ] is written to indicate that all the assumptions must be

intuitionistic. The rule states that if from such an assumption list one can prove

A, then from the same assumption list one can prove !A. In other words, if given

unlimited assumptions one can derive a singleA, then from the same assumptions

one can also derive an unlimited number of A. Instantiating !-I yields

[A] ` B

!-I

[A] ` !B

:



If I have an unlimited supply of ten zloty notes, then not only can I buy one

pizza, there is no limit to the number I can buy.

The rule !-E states that an intuitionistic assumption [A] may be satis�ed by

a proof of the proposition !A. Adding to our logic the axiom

[B] ` D

expresses that an unlimited supply of pizza leads to happiness. Instantiating !-E

yields

[A] ` !B [B] ` D

!-E

[A] ` D

:

Given an unlimited supply of zlotys, I can produce an unlimited supply of pizza,

and this in turn produces happiness.

A linear assumption h!Ai is equivalent to an intuitionistic assumption [A].

That is, �; h!Ai ` B is provable if and only if �; [A] ` B is provable. In the

forward direction, this is shown with the aid of !-I.

�; h!Ai ` B

��-I

� ` !A��B

[Id]

[A] ` A

!-I

[A] ` !A

��-E

�; [A] ` B

In the reverse direction, it is shown with the aid of !-E.

hIdi

h!Ai ` !A �; [A] ` B

!-E

�; h!Ai ` B

One might therefore ask: Why bother with assumptions of the form [A]? Why

not just use h!Ai instead? There is a good reason for distinguishing the two,

which will be explained after proof reductions are discussed.

The propositions !(A & B) and !A 
 !B are equivalent in linear logic. That

is, both of the following are provable:

h!(A &B)i ` !A
 !B;

h!A
 !Bi ` !(A&B):

Consider the following two airlines. On one, there is a single steward, who can

be called an unlimited number of times. Whenever called, he will give you your

choice of either a cup of co�ee or a cup of tea. On the other, there are separate

co�ee and tea stewards, each of whom can be called an unlimited number of

times, and each of whom provides a cup of the appropriate beverage when called.

Thanks to the equivalence displayed above, you realize that you should not let

this distinction determine your choice of airline.



4.3 Embedding intuitionistic logic in linear logic

One reason for incorporating ! into our logic is so that it has su�cient power

that intuitionistic logic can be embedded within it. The idea is to �nd a trans-

lation of the connectives !, � and + into the connectives !, ��, &, and �,

such that a judgement � ` A is provable in intuitionistic logic if and only if

the corresponding judgement [� ] ` A is provable in linear logic. As one might

expect, the embedding takes (unlabeled) assumptions of the intuitionistic judge-

ment into intuitionistic assumptions in the linear judgement. This is necessary

because Contraction and Weakening may be applied to any assumption in an

intuitionistic proof.

To �nd the translation for !, compare the rules for ! in Figure 1 with the

rules for �� in Figure 4. The key di�erence is that A appears as an intuitionistic

assumption in!-I, but as a linear assumption in ��-I. This makes it reasonable

to de�ne

A! B = !A��B:

With this de�nition, the intuitionistic rules can be de�ned from the correspond-

ing rules of linear logic, together with the rules for !-I and !-E.

hIdi

h!Ai ` !A �; [A] ` B

!-E

�; h!Ai ` B

��-I

� ` !A��B

� ` !A��B

[�] ` B

!-I

[�] ` !B

��-E

�; [�] ` B

The derived rules are slightly more general than required, in that � may contain

assumptions of either type, though [�] is indeed restricted to contain intuition-

istic assumptions.

A similar comparison of the rules for � with the rules for &, and of the rules

for + with the rules for 
, yields the complete embedding.

A! B = !A��B

A �B = A& B

A +B = !A� !B

It is an easy exercise to work out the corresponding derived rules.

Comparing the rules for � with the rules for 
 yields an alternative embed-

ding.

A �B = !A
 !B

Observe that h!A
 !Bi ` A& B but that hA & Bi 6 ` !A
 !B. So in some sense

the embedding with & is tighter than the embedding with 
.

4.4 Proof reductions

The new rules for proof reduction are show in Figure 5. Whereas before the

double bars standing for potential occurrences of Contraction and Weakening

were ubiquitous, now they appear only in the reduction rule for !. The rules for



�

�

�

t

[� ] ` A

!-I

[� ] `!A

[A] ` A � � �

�

�

�

u

�; [A] � � � ` B

=============

�; [A] ` B

!-E

[� ]; � ` B

=)

�

�

�

t

[� ] ` A � � �

�

�

�

u

[� ] � � � ; � ` B

=============

[� ]; � ` B

hAi ` A

�

�

�

u

�; hAi ` B

��-I

� ` A�� B

�

�

�

t

� ` A

��-E

�; � ` B

=)

�

�

�

t

� ` A

�

�

�

u

�; � ` B

�

�

�

t

� ` A

�

�

�

u

� ` B


-I

�; � ` A
B

hAi ` A hBi ` B

�

�

�

v

�; hAi; hBi ` C


-E

�; �; � ` C

=)

�

�

�

t

� ` A

�

�

�

u

� ` B

�

�

�

v

�; �; � ` C

�

�

�

t

� ` A

�

�

�

u

� ` B

&-I

� ` A& B

&-E

1

� ` A

=)

�

�

�

t

� ` A

�

�

�

t

� ` A

�-I

1

� ` A�B

hAi ` A

�

�

�

v

�; hAi ` C

hBi ` B

�

�

�

w

�; hBi ` C

�-E

�; � ` C

=)

�

�

�

t

� ` A

�

�

�

v

�; � ` C

Fig. 5. Proof reduction for linear logic

��, 
, � are simpler than the corresponding rules for!, �, and +, because the

linear connectives involve only linear assumptions.

In intuitionistic logic, substituting a proof of � ` A for each occurrence of

the leaf A ` A in a proof tree of �; A ` B may cause the assumption list �

to appear zero, one, or many times in the result: �; � � � � ` B. A number of

contractions and weakenings then yields �; � ` B. (See, for example, the rule



for ! in Figure 2.)

But in linear logic, substituting a proof of � ` A for each occurrence of the

leaf hAi ` A in a proof tree for �; hAi ` B will cause the assumptions � to

appear exactly once in the result: �; � ` B. (See, for example, the rule for ��

in Figure 5.) Hence, simpler reduction rules!

4.5 The need for intuitionistic assumptions

As noted previously, an intuitionistic assumption [A] is equivalent to a linear

assumption h!Ai. So why bother with intuitionistic assumptions? One is tempted

to de�ne a simpler version of linear logic by replacing [A] by h!Ai in the rules

Contraction and Weakening, and adopting some variant of the [Id], !-I, and !-E

rules. Surely such a system would be better?

Alas, this system is too simple. The problem shows up when one considers

proof reduction. Observe that a judgement can prove a proposition begining with

! even if none of the assumptions begin with !.

hIdi

hA �� !Bi ` A�� !B

hIdi

hAi ` A

��-E

hA �� !Bi; hAi ` !B

Now consider the following proof, which uses a variant Cont

0

of the contraction

rule, in which assumptions of the form [A] have been replaced by assumptions

of the form h!Ai.

hIdi

h!Bi ` !B

hIdi

h!Bi ` !B


-I

h!Bi; h!Bi ` !B 
 !B

Cont

0

h!Bi ` !B 
 !B

��-I (y)

` !B �� (!B 
 !B)

�

�

�

hA�� !Bi; hAi ` !B

��-E (y)

hA �� !Bi; hAi ` !B 
 !B

This contains a ��-I rule followed immediately by a ��-E rule, both marked with

(y). Applying proof reduction yields the following proof.

�

�

�

hA�� !Bi; hAi ` !B

�

�

�

hA�� !Bi; hAi ` !B


-I

hA �� !Bi; hAi; hA �� !Bi; hAi ` !B 
 !B

================================ Cont

0

hA�� !Bi; hAi ` !B 
 !B

But this proof is illegal! Contraction has been applied to assumptions hA�� !Bi

and hAi, which is not allowed.

The problem is that the soundness of the proof reduction rule for �� depends

on the fact that in a proof of �; hAi ` B, the assumption hAi is used exactly



once. But this is no longer true with the modi�ed Contraction and Weakening

rules.

This problem does not arise for the system given here. The closest one can

come to the bad proof is the following.

hIdi

h!Bi ` !B

[Id]

[B] ` B

!-I

[B] ` !B

[Id]

[B] ` B

!-I

[B] ` !B


-I

[B]; [B] ` !B 
 !B

Cont

[B] ` !B 
 !B

!-E

h!Bi ` !B 
 !B

��-I (y)

` !B �� (!B 
 !B)

�

�

�

hA �� !Bi; hAi ` !B

��-E (y)

hA�� !Bi; hAi ` !B 
 !B

Applying proof reduction yields the following proof.

�

�

�

hA�� !Bi; hAi ` !B

[Id]

[B] ` B

!-I

[B] ` !B

[Id]

[B] ` B

!-I

[B] ` !B


-I

[B]; [B] ` !B 
 !B

Cont

[B] ` !B 
 !B

!-E

hA �� !Bi; hAi ` !B 
 !B

Thanks to !-E, the linear assumption h!Bi is used exactly once in the proof of

h!Bi ` !B 
 !B, and so proof reduction poses no problem.

It is indeed possible to formulate a system of linear logic without introducing

intuitionistic assumptions. One way to do so is to replace the rules [Id], Contrac-

tion, Weakening, !-I, and !-E of Figure 4 by the rules in Figure 6. The rule !-E

0

1

combines [Id] and !-E, and the rules !-E

0

2

and !-E

0

3

correspond to Contraction

and Weakening. This system has been explored by Benton, Bierman, de Paiva,

and Hyland [2]. This system is considerably more complex, especially when one

compares !-I with !-I

0

.

�

1

` !A

1

� � � �

n

` !A

n

h!A

1

i; : : : ; h!A

n

i ` B

!-I

0

�

1

; : : : ; �

n

` !B

� ` !A �; hAi ` B

!-E

0

1

�; � ` B

� ` !A �; h!Ai; h!Ai ` B

!-E

0

2

�; � ` B

� ` !A � ` B

!-E

0

3

�; � ` B

Fig. 6. Alternate rules for linear logic



5 Linear types

At last, all the pieces are in place to carry through our plan. We have seen

intuitionistic logic and how it induces a typed functional language, and we have

seen linear logic. Having set everything up carefully, it is straightforward to

induce a typed language based on linear logic.

As before, there is one term form for variables, and one for each of the

logical introduction and elimination rules. The term forms follow closely what

has already been seen for intuitionistic logic. To distinguish the new term forms,

they are generally written with angle brackets rather than round brackets. There

are two pair constructors, ht; ui for types of the form A
B, and hht; uii for types

of the form A&B. The grammar of terms is as follows.

s; t; u; v; w ::= x

j �hxi: u j s hti

j !t j case s of !x! u

j ht; ui j case s of hx; yi ! v

j hht; uii j fst hsi j snd hsi

j inl hti j inr hui j case s of inl hxi ! v; inr hyi ! w

Assumptions now take two forms: linear, written hx : Ai, and intuitionistic,

written [x : A]. As before, let �;� range over lists of zero or more assumptions,

where all of the variables are distinct, and let [� ] denote a list containing only

intuitionistic assumptions. Judgements have the form � ` t : A.

The rules for linear terms are shown in Figure 7.

Here is a sample proof augmented with terms.

hIdi

hx : !Bix : !B

[Id]

[y : B] ` y : B

!-I

[y : B] ` !y : !B

[Id]

[y : B] ` y : B

!-I

[y : B] ` !y : !B


-I

[y : B]; [y : B] ` h!y; !yi : !B 
 !B

Cont

[y : B] ` h!y; !yi : !B 
 !B

!-E

hx : !Bi ` case x of !y ! h!y; !yi : !B 
 !B

��-I

` �hxi: case x of !y ! h!y; !yi : !B �� !B 
 !B

As before, the judgement at the root uniquely encodes the entire proof tree,

modulo the commuting conversions.

5.1 Term reductions

Proof reductions may be read o� as term reductions. As before, the properties

of proof reductions guarantee that every term has a unique normal form, and



hIdi

hx : Ai ` x : A

[Id]

[x : A] ` x : A

�; � ` t : A

Exchange

�; � ` t : A

�; [y : A]; [z : A] ` u : B

Contraction

�; [x : A] ` u[x=y; x=z] : B

� ` u : B

Weakening

�; [x : A] ` u : B

[� ] ` t : A

!-I

[� ] ` !t : !A

� ` s : !A �; [x : A] ` u : B

!-E

�; � ` case s of !x! u : B

� ` t : A � ` u : B


-I

�; � ` ht; ui : A
B

� ` s : A
 B �; hx : Ai; hy : Bi ` v : C


-E

�; � ` case s of hx; yi ! v : C

� ` t : A � ` u : B

&-I

� ` hht;uii : A&B

� ` s : A&B

&-E

1

� ` fst hsi : A

� ` s : A& B

&-E

2

� ` snd hsi : B

�; hx : Ai ` u : B

��-I

� ` �hxi: u : A�� B

� ` s : A�� B � ` t : A

��-E

�; � ` s hti : B

� ` t : A

�-I

1

� ` inl hti : A�B

� ` u : B

�-I

2

� ` inr hui : A� B

� ` s : A� B �; hx : Ai ` v : C �; hy : Bi ` w : C

�-E

�; � ` case s of inl hxi ! v; inr hyi ! w : C

Fig. 7. Linear types

that term reduction preserves well typing.

case !t of !x! u =) u[t=x]

(�hxi: u) hti =) u[t=x]

case ht; ui of hx; yi ! v =) v[t=x; u=y]

fst h hht; uii i =) t

snd h hht; uii i =) u

case inl hti of inl hxi ! v; inr hyi ! w =) v[t=x]

case inr hui of inl hxi ! v; inr hyi ! w =) w[u=y]

Thanks to linearity, the only substitution in the above that may duplicate a

variable is that for !. In a lazy language, this means that only evaluation of !

requires overwriting.

It is possible to arrange an implementation so that a variable corresponding

to a linear assumption contains the sole pointer to a value. However, this requires

that a term of the form !t be re-evaluated each time it is examined, which is

prohibitively expensive for most purposes.



More commonly, a term of the form !t will be overwitten with its value the

�rst time it is accessed, and future accesses will copy a pointer to that value. In

this case, a variable corresponding to a linear assumption may not contain the

sole pointer to a value. However, the absence of Contraction and Weakening on

linear assumptions makes it possible to guarantee the following useful property:

if a variable corresponding to a linear assumption ever contains the sole pointer

to a variable, then it will continue to do so. Some applications of this property

will be discussed later.

5.2 Embedding intuitionistic logic into linear logic

As we have seen, the connectives of intuitionistic logic can be regarded as ab-

breviations for combinations of connectives in linear logic.

A! B = !A��B

A �B = A& B

A +B = !A� !B

Similarly, the term calculus of intuitionistic logic can be regarded as abbrevia-

tions for combinations of linear terms.

�x: u = �hx

0

i: case x

0

of !x! u

t (u) = t h!ui

(t; u) = hht; uii

fst (s) = fst hsi

snd (s) = snd hsi

inl (t) = inl h!ti

inr (u) = inr h!ui

case s of inl (x)! v; inr (y) ! w = case s of

inl hx

0

i ! case x

0

of !x! v;

inr hy

0

i ! case y

0

of !y ! w

An intuitionistic judgement � ` t : A is provable if and only if the corresponding

linear judgement [� ] ` t : A is provable. In this way, the ordinary lambda calculus

can be regarded as a subset of the linear lambda calculus.

There is an alternate translation for the product types.

A �B = !A
 !B

This gives rise to an alternate translation for terms.

(t; u) = h!t; !ui

case s of (x; y)! v = case s of hx

0

; y

0

i !

case x

0

of !x!

case y

0

of !y ! v

In some circumstances, this alternate translation may be more e�cient.



The embedding of intutionistic logic into linear logic also works for the �x-

point constant.

�x : !(!A��A) ��A

This has the following reduction rule.

�x h!fi =) f h!�x h!fii

5.3 Array update

As mentioned, if a variable corresponding to a linear assumption ever contains

the sole pointer to a value, then it will continue to do so. This can be exploited

to provide a solution to the old problem of in-place update for arrays.

An array (of type Arr) is a mapping of indices (of type Ix ) to values (of type

Val). The usual operations provided on arrays are as follows.

new : Val ! Arr

lookup : Ix ! Arr ! Val

update : Ix ! Val ! Arr ! Arr

Here new (v) returns an array with each location initialised to v, and

lookup (i) (a) returns the value at location i in array a, and update (i) (v) (a)

returns an array identical to a except that location i contains value v. The trou-

ble with this is that the update operation can be prohibitively expensive, as it

may need to copy the entire array.

A version of these operators may be devised for the linear type calculus that

places a newly allocated array in a variable corresponding to a linear assumption.

Since the variable contains the sole pointer to the array, one can guarantee that

it will continue to do so. Hence the update operation may safely be performed

in place. Here are the new versions of the operations.

new : !Val �� (Arr ��Arr 
X) ��X

lookup : !Ix ��Arr ��Arr 
 !Val

update : !Ix �� !Val ��Arr ��Arr

Here new hvi hfi allocates a new array a with each location initialised to v, and

then computes f hai which will return a pair ha

0

; xi, and then deallocates the

�nal array a

0

and returns the value x; thus new acts very much like a block, in

that it allocates an array, processes it, and deallocates it. The call lookup hii hai

returns the pair ha; vi where v is the value in location i of a. Note that since

lookup is passed the sole pointer to the array, it must return the array it is passed.

As before, the call update hii hvi hai returns an array identical to a except that

location i contains value v; but since this call is passed the sole pointer to array

a, it may be safely implemented by updating the array in place.

For example, evaluating

new h6i h�ha

0

i: case lookup h1i ha

0

i of ha

1

; xi !

case update h2i hx+ 1i ha

1

i of a

2

!

case lookup h2i ha

2

i of ha

3

; yi !

ha

3

; x� yii



returns 42. (In the second line, case t of x! u is a convenient abbreviation for

(�hxi: u) (t).)

This approach requires further re�nement. The form given here is too un-

wieldy for convenient use. But it should give a hint as to the practical applications

of linear logic.

6 Conclusions and related work

Traditional logic has close ties to computing in general and functional languages

in particular. The Curry-Howard isomorphism speci�es a precise correspondence

between intuitionistic logic, on the one hand, and typed lambda calculus, on the

other [4, 11].

As a result, logicians and computer scientists sometimes discover the same

system independently, usually with the logician getting there �rst. The type in-

ference algorithm published by Milner in 1978, is at the heart of the type system

used in ML, Miranda, and Haskell [14]. Unbeknown to Milner, the same idea

was published by Hindley in 1969 [9]. Reynolds described a polymorphic lambda

calculus in 1974 that generalised Milner's type system, and also generalised the

power of generic type variables in languages such as Ada [17, 18]. Unbeknown

to Reynolds, the same generalisation was described by Girard in 1972 [5].

In 1987, Girard published the �rst description of linear logic [6]. By now, the

computer scientists and the logicians had realised that they had something to say

to one another: the seminal paper appeared in Theoretical Computer Science.

Computer scientists have been active ever since, exploring the applications of

linear logic to computing.

Early computational models were discussed by Lafont [12] and Holstr�om [10].

Abramsky wrote a highly inuential paper that explored computing applications

of both intuitionistic and classical linear logic [1]. Other models have been dis-

cussed by Chirimar, Gunter, and Riecke [3], Lincoln and Mitchell [13], Reddy

[16], and Wadler [21, 22].

The particular formulation of linear logic presented here is based on Girard's

Logic of Unity, a re�nement of linear logic [7]. This overcomes some technical

problems with other presentations of linear logic, some of which are discussed

by Benton, Bierman, de Paiva, and Hyland [2], and Wadler [23, 24]. Much of the

insight for this work comes from categorical models of linear logic [19, 15]. The

particular system presented here was suggested to the author by Girard, and a

similar system has been suggested by Plotkin.

For further background on traditional logic see the wonderful introduction

by Girard, Lafont, and Taylor [8], and for further details on linear logic see the

helpful textbook by Troelstra [20].

Acknowledgements. I thank Cordy Hall for detailed and timely comments,

and Stefan Kahrs and John Hatcli� for suggesting improvements. The paper was

produced using Knuth's Tex, Lamport's Latex, Taylor's tree macros, and style

macros from Springer-Verlag.



References

1. S. Abramsky, Computational interpretations of linear logic. Presented at Work-

shop on Mathematical Foundations of Programming Language Semantics, 1990. To

appear in Theoretical Computer Science.

2. N. Benton, G. Bierman, V. de Paiva, and M. Hyland, Type assignment for intu-

itionistic linear logic. Technical report 262, Computing Laboratory, University of

Cambridge, August 1992.

3. J. Chirimar, C. A. Gunter, and J. G. Riecke. Linear ML. In Symposium on Lisp

and Functional Programming, ACM Press, San Francisco, June 1992.

4. H. B. Curry and R. Feys, Combinatory Logic, North Holland, 1958.

5. J.-Y. Girard, Interpr�etation functionelle et �elimination des coupures dans

l'arithm�etique d'ordre sup�erieure. Ph.D. thesis, Universit�e Paris VII, 1972.

6. J.-Y. Girard, Linear logic. Theoretical Computer Science, 50:1{102, 1987.

7. J.-Y. Girard, On the unity of logic. Manuscript, 1991.

8. J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and types, Cambridge University

Press, 1989.

9. R. Hindley, The principal type scheme of an object in combinatory logic. Trans.

Am. Math. Soc., 146:29{60, December 1969.

10. S. Holmstr�om, A linear functional language. Draft paper, Chalmers University of

Technology, 1988.

11. W. A. Howard, The formulae-as-types notion of contstruction. In J. P. Seldin and

J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Cal-

culus, and Formalism, Academic Press, 1980. (The original version was circulated

privately in 1969.)

12. Y. Lafont, The linear abstract machine. Theoretical Computer Science, 59:157{180,

1988.

13. P. Lincoln and J. Mitchell, Operational aspects of linear lambda calculus. In 7'th

Symposium on Logic in Computer Science, IEEE Press, Santa Cruz, California,

June 1992.

14. R. Milner, A theory of type polymorphism in programming. J. Comput. Syst. Sci.,

17:348{375, 1978.

15. V. Pratt, Event spaces and their linear logic. In AMAST '91: AlgebraicMethodology

And Software Technology, Iowa City, Springer Verlag LNCS, 1992.

16. U. S. Reddy, A typed foundation for directional logic programming. In E. Lamma

and P. Mello, editors, Extensions of logic programming, Lecture Notes in Arti�cial

Intelligence 660, Springer-Verlag, 1993.

17. J. C. Reynolds, Towards a theory of type structure. In B. Robinet, editor, Proc.

Colloque sur la Programmation, LNCS 19, Springer-Verlag.

18. J. C. Reynolds, Three approaches to type structure. In Mathematical Foundations

of Software Development, LNCS 185, Springer-Verlag, 1985.

19. R. A. G. Seely, Linear logic, �-autonomous categories, and cofree coalgebras. In

Categories in Computer Science and Logic, June 1989. AMS Contemporary Math-

ematics 92.

20. A. S. Troelstra, Lectures on Linear Logic. CSLI Lecture Notes, 1992.

21. P. Wadler, Linear types can change the world! In IFIP TC 2 Working Confer-

ence on Programming Concepts and Methods, Sea of Galilee, Israel, April 1990.

Published as M. Broy and C. Jones, editors, Programming Concepts and Methods,

North Holland, 1990.



22. P. Wadler, Is there a use for linear logic? In Conference on Partial Evaluation

and Semantics-Based Program Manipulation (PEPM), ACM Press, New Haven,

Connecticut, June 1991.

23. P. Wadler, There's no substitute for linear logic. Presented at Workshop on Math-

ematical Foundations of Programming Language Semantics, Oxford, April 1992.

24. P. Wadler, A syntax for linear logic. Presented at Conference on Mathematical

Foundations of Programming Language Semantics, New Orleans, April 1993.

This article was processed using the L

a

T

E

X macro package with LLNCS style


