
THREE APPROACHES TO TYPE STRUCTURE %

John C, Reynolds

Syracuse University

Syracuse, New York 13210, U.S.A.

ABSTRACT We examine three disparate views of the type structure of
]programming languages: Milner's type deduction system and polymorphic
~[e_.!t construct, the theory of subtypes and generic operators, and the
polymorphic or second-order typed lambda calculus. These approaches
are illustrated with a functional language including product, sum and
list constructors. The syntactic behavio~ of types is formalized with
~ype inference rules, bus their semantics is treated intuitively.

I. INTRODUCTION

The division of programming languages into two species, typed and untyped,

has engendered a long and rather acrimonious debate. One side claims that untyped

languages preclude compile-time error checking and are succinct to the point of

unintelligibility, while the other side claims that typed languages preclude a variety

of powerful programming techniques and are verbose to the point of unintelligibility.

From the theorist's point of view, both sides are right, and their arguments are

the motivation for seeking type systems that are more flexible and succinct than those

of existing typed languages. This goal has inspired a substantial volume of theoreti-

cal work in the last few years. In this paper I will attempt to survey some of this

work at a level that I hope will reveal its implications for future languages.

The main difficulty that I face is that type theory has moved in several direc-

tions that, as far as we presently know, are incompatible with one another. This

situation dictates the organization of this paper: Section 2 lays a groundwork that

is common to all directions, while each later section is devoted to a particular

direction. Thus the later sections are largely independent of one another.

Primarily because of my limited knowledge, this survey will be far from compre-

hensive. Neither algebraic data types [1-3] nor conjunctive types [4,5] will be

covered. Nor will I describe any of several fascinating systems [6-9] in which types

and values are so intertwined that types become full-blown program specifications and

programs become constructive proofs that such specifications are satisfiable.

Moreover, I will consider only functional languages, since the essential character

of type structure is revealed more clearly without the added complexity of imperative

features. (I believe that the proper type structure for Algol-like languages is

obtained from the subtype discipline of Section 4 by taking "types" to be "phrase

%
Work supported by National Science Foundation Grant MCS-8017577.

98

types", built from primitive types such as integer expression, real variable, and

command [10-12].)

To be accessible to readers who are untrained in mathematical semantics, our

exposition will be formal but not rigorous. In particular, we will often discuss

semantics at an intuitive level, speaking of the set denoted by a type or the function

denoted by an expression when rigorously we should speak of the domain denoted by a

type or the continuous function denoted by an expression. Regrettably, this level of

discourse will obscure some profound controversies about the semantics of types.

Finally, I must apologize for omissions and errors due to either ignorance or

haste. This is a preliminary report, and I would welcome suggestions from readers

for corrections or extensions.

2. THE BASE LANGUAGE

Although the approaches to type structure that we are going to survey are incom-

patible with one another, they are all built upon a common view of what types are all

about. In this section, we will formalize this view as a "base" language, in terms

of which the various approaches can be described as extensions or modifications.

First we will introduce the expressions of the base language as though it were a

typeless language. Then we will introduce types and give rules for inferring the

types of expressions. Finally we will show how expressions can be augmented to contain

enough type information that the inference of their types becomes trivial.

Because it is intended for illustrative purposes, the base language is more

complicated than a well-designed functional language should be. In several instances,

it contains similar constructs (e.g. numbered and named alternatives) that are both

included only because they exhibit significant differences in some extension of the

language.

2a. Expressions

To define expressions we will give their abstract syntax, avoiding any formali-

zation of precedence or implicit parenthesization. In this definition we write K for

the set of positive integers, Z for the set of all integers, I for the (countably

infinite) set of identifiers, and E for the set of expressions. The simplest kinds

of expressions are identifiers (used as variables):

E ::= I (Sl)

constants denoting integers:

E ::= Z (S2)

boolean values:

E ::= true I false ($3)

99

and primitive operations on integers and boolean values, such as

E ::= add I equals ($4)

Less trivially, we have lambda expressions to denote functions, and a notation

for function application:

E ::= ~I. E I E E (S5)

Note that we do not require the operand of function application to be parenthesized~

so that one can write f x instead of f(x). We will assume that application is left

associative and that ~ has a lower precedence than application, e.g. Ix. ly. f y x

means lx. (ly. ((f y) x)).

Informally, the meaning of functions is "explained" by the rule of beta-reduction

(Ai. e I) e 2 = eli i ÷ e2 , (R5)

where the right side denotes the result of substituting e 2 for i in e I (with renaming

of bound identifiers in e I that occur free in e2). For example, (ix. f x y x)(g a b)

has the same meaning as f (g a b) y (g a b).

The rule of beta-reduction implies that our language has "call-by-name" semantics.

For example, if i does not occur in e I then (li. e I) e 2 has the same meaning as e I ,

even if e 2 is an expression whose evaluation never terminates. While much of what we

are going to say is equally applicable to call by value, we prefer the greater elegance

and generality of call by name (particularly since the development of lazy evaluation

[13-14] has led to its efficient implementability).

To avoid any special notation for functions of several arguments, we will use the

device of Currying, e.g. we will regard add as a function that accepts an integer and

yields a function that accepts an integer and yields an integer, so that add 3 4 = 7.

In general, where one might expect l(x I Xn). e we will write lx I %x n. e,

and where one might expect f(el, ... , e n) we will write (... (f e I) ... e n) or,

with implicit parenthesization, f e I ... e n.

Next, we introduce notation for the construction and analysis of records. Here

there are two possible approaches, depending upon whether fields are numbered or

named.]For records with numbered fields, we use the syntax

E ::= <E E> I E.K ($6)

For example, <x, y> denotes a two-field record whose first field is x and second field

is y, and if z denotes a two-field record then z.l and z.2 denote its fields. In

general, the meaning of these constructions is determined by the reduction rule

<el~ ... , en>.k = e k when 1 < k < n . (R6)

Notice that this rule (as with beta reduction) implies a call-by-name semantics.

For example, <el~ e2>.l = <e2, el>.2 = el, even when e 2 does not terminate.

100

For records with named fields, we use the syntax

E ::= <I: E, ... , I: E> I E.I

with the restriction that the identifiers preceding the colons must be distinct.

The reduction rule is

With

e.g.

(s7)

<il: el, ... , in: en>.i k = e k when i < k < n . (R7)

named fields, the value of a record is independent of the order of its fields,

<real: x, imag: y> = <imag: y, real: x>.

We also introduce notation for alternatives (often called a sum, disjoint union,

or variant-record construct):

E ::= inject K E I choose(E, ... , E) ($8)

The value of inject k e is the value of e "tagged" with k. If fl' "'" ' fn are

functions, then choose(f!, ... , fn) is a function that, when applied to the value

x tagged with k, yields fk x. Thus the appropriate reduction rule is

choose(f I , fn)(inject k e) = fk e when i < k < n . (R8)

(Strictly speaking, "tagging" is pairing, so that inject k e is a pair like <k, e>.

But we consider these to be different kinds of pairs so that, for example,

(inject k e).l is meaningless.)

In some languages, the analysis of alternatives is performed by some form of

case construction that can be defined in terms of choose, e.g.

altcase i: e of (e I , e n) ~ choose(ki.e I , ~i.e n) e .

However, the choose construction is conceptually simpler since it does not involve

identifier binding.

The tags of alternatives, like the fields of records, can be named instead of

numbered. For named alternatives, we will use the syntax

E ::= inject I E I choose(I: E, ... , I: E) ($9)

with the restriction that the identifiers preceding the colons must be distinct.

The reduction rule is

ch°°se(il: fl' in: fn)(inject i k e) = fk e when 1 < k < n , (R9)

and the meaning of choose(if: fl' "'" ' in: fn) is independent of the order of the

components ik: fk"

For the construction of lists, we will use the primitives of LISP:

E ::= nil I cons E E (SlOa)

where nil denotes the empty list and cons x y denotes the list whose first element is

x and whose remainder is y. For the analysis of lists, however, we will deviate

substantially from LISP:

E ::= ichoose E E (S10b)

101

The value of ichoose e f is a function that, when applied to the empty list, yields

e and, when applied to a list with first element x and remainder y, yields f x y.

More formally, we have the reduction rules

(ichoose e f) nil = e , (RI0)
(ichoose e f) (cons x y) = f x y .

The Ichoose operation can be defined in terms of the conventional LISP primitives:

ichoose e f = I£. if null £ then e else f (car £) (cdr £) ,

and the LISP primitives can he defined in terms of ichoose and an error operation:

null = ichoose true (Ix. ly. false) ,

car = ichoose error (Ix. ly. x) ,

cdr = ichoose error (Ix. ly. y) .

However, in a typed language ichoose is preferable to the LISP primitives since it

converts the common error of applying car or cdr to the empty list into a type error.

For the definition of identifiers we use Landin's let construction [15] (albeit

with a call-by-name rather than a call-by-value semantics). The syntax is

E ::= let I = E in E (SII)

and the reduction rule is

le___~t i = e2 in e I = ell i
e 2

Of course, as noted by Landin, let can be defined in terms of i and application:

le__!t i = e 2 in e I E (li. e 1) e 2 . (RII)

However, we will regard let i = e 2 i__n_n e I as an independent construction in its own

right, since its typing behavior is significantly different than that of (li. e l) e 2.

Finally, we introduce a conditional expression

E ::= if E then E else E

with the reduction rules

if true then e I else e 2 = e I ,

if false then e I els 9 e 2 = e 2 ,

a case (branch-on-integer) expression

E ::= case E of (E, ... , E)

with the reduction rule

case k of (e I , en) = e k

and a fixed-point expression

E ::= fix E

(s12)

(RI2)

(S13)

when I < k < n , (RI3)

(S14)

102

with the reduction rule

fix e = e(fix e) .

The last is the key to recursive definition.

define McCarthy's [16]

label i: e E fix(%i, e) ,

or Landin's

letrec i = e2 in e I a let i = fix(hi, e 2) in e I .

However, just as with choose, fix is conceptually simpler since it does not involve

identifier binding. (We are purposely neglecting the complications of the multiple

letrec, which is needed to define simultaneously recursive functions, and whose

definition in terms of fix is rather messy.)

It should be noticed that our choice of call-by-name semantics implies that fix

can be used to define infinite lists. For example,

fix(~£, cons 0 4)

denotes the infinite list (0, 0, ...), and

fix(%f. An. cons n (f (add 1 n)))

denotes the function mapping an integer n into the infinite list (n, n+l, ...).

2b. Types and their Inference Rules

We now introduce the types of our base language. Intuitively:

int denotes the set of integers.

bool denotes the set {true, false}.

÷ ~' denotes the set of functions that map values belonging to (the set

denoted by) e into values belonging to (the set denoted by) ~'.

prod(~l, ... , mn) denotes the set of n-field records in which, for 1 < k < n,

the kth field belongs to ~k"

prod(il:~l, ... , in:en) denotes the set of records with fields named

il, ... , in, in which each i k names a field belonging to ek"

sum(~l, ... , m n) denotes the set of tagged values such that the tag is

an integer between 1 and n, and a value with tag k belongs to ek"

sum(il:ml, ... , in:~n) denotes the set of tagged values such that the tag

belongs to {il, ... , in}, and a value with tag i k belongs to ~k"

list m denotes the set of lists whose elements belong to ~.

(Ri4)

For example, one can use it to

103

More formally, the set ~ of types is defined by the abstract syntax

::= int I bool

I prod(~ ~) I prod(I:~ I:~)

{ SU~(~ , ~) I sum(I:~ I:~>

I list

with the proviso that the pairs I:~ in r~3~(I:~ , ... , I:~) or sum(I:~, ... , I:g)

must begin with distinct identifiers, and that the ordering of these pairs is

irrelevant.

Occasionally, we will need to speak of type expressions, which are defined by

the same syntax with the added production

::= T

where T is a countably infinite set of type variables.

We will assume that + is right associative and has a lower precedence than the

other type operators. Thus for example, int ÷ list int ÷ int stands for int +

((list int) + int).

Roughly speaking, an expression has a type if its value belongs to that type.

But of course, just as the value of an expression depends upon the values of hhe

identifiers occurring free within it, so the type of an expression will depend upon

the types of the identifiers occurring free within it. To deal with this complica-

tion, we introduce the notion of a typing.

Let e be an expression, ~ (often called a type assignment) be a mapping of

(at least) the identifiers occurring free in e into types, and e be a type. Then

is called a typing, and read "e has type e under ~". For example, the following are

valid typings:

x: !n_!t, f: int ÷ int I-- f(f x): in._~t

f: int ÷ int I-- Ix. f(f x): int ÷ int-

I-- If" Ix. f(f x): (int ÷ int) ÷ int + int

I-- If. Ix° f(f x): (bool ÷ bool) + bool ÷ bool .

Notice that, as illustrated by the last two lines, a typing of a closed expression

can have an empty type assignment, and two typings can give different types to the

same expression, even under the same type assignment.

We will now give rules for inferring valid typings of our base language. Each

of these inference rules consists of zero or more premises separated by a long hori-

zontal line from a conclusion, and contains various symbols called metavariables.

An instance of a rule is obtained by replacing the metavariables by phrases of the

appropriate kind as described by the following table (and occasionally subject to

restrictions stated with the rule itself):

104

Metavariable Kind of phrase

type assignments

i i I i n i k identifiers

m' ~i mk mn types

z integers

e e I e 2 e n expressions

k positive integers (k > 0)

n nonnegative integers (n ~ 0)

Every instance of every rule has the property that, if the premises of the instance

are all valid typings, then the conclusion of the instance is a valid typing. Thus

a typing can be proved to be valid by giving a list of typings, ending with the

typing in question, in which every typing is the conclusion of an instance of a rule

whose premises all occur earlier in the list.

The following is a list of the inference rules, ordered to parallel the abstract

syntax of the base language:

when i is in the domain of ~, and ~ assigns ~ to i. (Ii)

I-- z: in___~t ~ I-- true: bool ~ I-- false: bool (I2,I3)

I-- add: int ÷ int ÷ int ~ I-- equals: int ÷ int + bool

Z~ i: m I-- e: ml I-- el: m + ~'

I-- e2: ~

I-- e I e2: m'

el: ml

e : ~0
n n

<e I en>: p rod(ml Wn)

e: prod(ml, ... , en)

e.k: mk

when i < k < n

I-- el: ~i

I-- <il:e I, --- , in:en >: pr°d(il:m I, "'" , in:m n)

(I4)

(is)

(16a)

(16b)

(I7a)

I--e: ~(il:e I in:~ n)

I-- e.ik: mk

l--e: mk

I-- i~ject k e: sum(m I mn)

I-- e I : e I -~ ~

~T e n : ~0ll

105

when 1 < k < n

when i < k < n

I--ch°°se(e I en): sum(e I mn) + e

I-- e: ~k

I--inject i k e: sum(il:ml, ... , in:en)

w l-el: ~i ÷ m

~T ell: ~gll

when 1 < k < n

w I--ch°°se(il:e I, " ' " ' in:en): sum(il:~ I in:m n) ÷ ~

~I-- nil: list

I-- el: m'

w I-- e2: ~ ÷ list m ÷ ~'

I-- el: m

I-- e2: list

I-- cons e I e2: list m

I-- ichoose e I e2: list e ÷ ~'

I-- e2: m

w, i: ~ I-- el: m'

I-- let i = e2 in el: m'

I--e: bool

w I--el:

w I--e2:

w I-- if e then e I else e2: m

w I- el: m

I-- case e of (e I en): m

(17b)

(ISa)

(1 8 b)

(19a)

(19b)

(llOa,b)

(I l O c)

(lii)

(112,113)

108

I- e: ~ -> £0 (i14)

In rules 15a and Iii, the notation ~, i:~ denotes the type assignment that assigns

to i and assigns to all other identifiers in the domain of = the same type that is

assigned by ~.

To illustrate the use of these rules we give a proof of the validity of a typing

of the expression

fix(lap. Ix. Ay. ichoose y (An. Az. c0ns n (ap z y)) x) ,

which denotes a function for appending two lists. At the right of each typing in the

proof we indicate the rule of which it is a conclusion. To save space, we write ~i

and ~2 to abbreviate the following type assignments:

~i = ap: list int ÷ list int + list int, x: list int, y: list int

~2 = ~i' n: in__~t, z: list int

Then the proof is:

72 I-- ap: list int + list int + list int (Ii)

~2 I-- z: list int (Ii)

32 I-- ap z: list int ÷ list int (I5b)

~2 I--Y: list int (Ii)

~2 I-- ap z y: list int (I5b)

~2 I-- n: in___!t (Ii)

~2 I-- cons n (ap z y): list int (llOb)

~i' n: int I-- Az. cons ' n (ap z y): list int ÷ list int (15a)

~I I- An. Az. cons n (ap z y): int ÷ list int ÷ list int (15a)

~i I-y: llst int (Ii)

~i I- ichoose y (An. lz. cons n (ap z y)): list int ÷ llst int (llOc)

~I I- x: list int (II)

~i I- ichoose y (In. lz. cons n (ap z y)) x: list int (~5b)

ap: list int + list int ÷ list int, x: list int (15a)

I-- Ay. Ichoose y (An. %z. cons n (ap z y)) x: llst int + llst int

ap: list int ÷ list int ÷ list int (15a)

I-- lx. Ay. ichoose y (An. iz. cons n (ap z y)) x:

list int + list int + list int

I-- lap. Ix. %y. ichoose y (In. lz. cons n (ap z y)) x: (ISa)

(list int ÷ list int + list int~ + list int + list int + list int

I-- f l ix(lap. Ix. ly. ichoose y (An. %z. cons n (ap z y)) x): (I14)

list int + list int ÷ list int

107

As a second example, the reader might prove the typing

[-- f_[x(lred. ~£. if. ~a. ichoose a (In. ~z. f n (red z f a)) ~):

list int ÷ (int ÷ bool ÷ bool) ÷ bool ÷ bool

of the "reduce" function that, when applied to a list (Xl, ... , Xn), a function f,

and a value a, gives f x I (f x 2 (... (f x n a) ...)).

2c. Explicit Typing

So far we have taken the attitude that types are properties of expressions that

can be inferred but do not actually appear within expressions. This view is subject

to several criticisms:

The]problem of generating typings of an expression is an instance of proof

generation, for which - in general - there may be no efficient algorithm

or even no algorithm at all. (Although we will see in the next section that

an efficient typing algorithm is known for a slight variation of our base

language, such algorithms are not known for some of the language extensions

that will be discussed later.)

An expression will often have more than one valid typing. For example,

the typings shown in the previous subsection remain valid if int and bool

are replaced by arbitrary types. Thus, if one takes the view that different

typings lead to different meanings, then our base language is ambiguous.

Presumably the competent programmer knows the types of the programs he

writes. By preventing him from communicating this knowledge in his programs,

we are precluding valuable error checking and degrading the intelligibility

of programs.

These criticisms suggest modifying our base language so that expressions contain

type information. We will call such a modified language explicitly typed if it

satisfies two criteria:

(i) Every expression, under a particular type assignment, has at most

one type. (Thus there is a partial function, called a typing function,

that maps an expression e and a type assignment ~ into the type of e

under ~.)

(2) The type of any expression, under a particular type assignment, is a

function of the types of its immediate subexpressions under particular

(though perhaps different) type assignments.

In the specific case of our base language, to obtain explicit typing we must

require type information to appear in four contexts: lambda expressions, inject

operations for numbered and named alternatives, and nil. (In each of these contexts,

we will write the type information as a subscript.) Thus explicit typing requires

108

the modification of four pairs of abstract syntax and type-inference rules:

E ::= ll~. E 7, i: ~ I-- e: ~'

7 I-- 1i e . e: e ÷ e'

(E5a)

E ::= inject~,ooo,~ K E ~ I-- e: e k when 1 < k < n (E8a)

E ::= injectl:~,...,l: g

I-- i~je~ml,, k e: sum(m I , en)
o,~e n

I E 7 I-- e: ~k when 1 < k < n (E9a)

I ~ injectil:m I in:e n i k e:

sum(il:m I, ... , in:m n)

E ::= nil~ 7 I-- nile: list e (ElOa)

(Actually, one further restriction must be imposed on the base language to obtain

explicit typing: we exclude the degenerate expressions case e of () and choose(),

which could have types e and s~O + m for arbitrary e.)

Somewhat surprisingly, it is not necessary to modify the let construction, since

the type of le____~t i = e 2 i_n_n e I under 7 must be the type of e I under 7, i:m, where m is

the type of e 2 under 7. (However, a similar argument does not work for the letrec

construction.)

For example, the following are explicitly typed versions of the expressions whose

typing was discussed in the previous subsection:

fix(laPlist int + list int ÷ list int" %Xlist int" %Ylist int"

ichoose y (inin t. iZlist int" q0~ns n (ap z y)) x) ,

fix(iredlist int ÷ (int ÷ bool + bool) ÷ bool ÷ bool"

l£1ist int" Ifint + bool + buol" %abool"

ichoose a (inin t. %Zlist int" f n (red z f a)) ~) .

Although the rigorous semantics of types is beyond the scope of this paper, it

should be mentioned that the pragmatic arguments about implicit versus explicit typing

reflect profoundly different views of the meaning of types. Consider, for example,

the untyped expression Ix. x, and the explicitly typed expressions AXin t. x and

IXint + int" x. Three views can be taken of the meaning of these expressions:

(i) All three expressions have the same meaning. The types in the explicitly

typed expressions are merely assertions about how these expressions will

be used [17].

109

(2) The expressions have different meanings, but the meanings of the typed

expressions are functions of the meanings of the untyped expression and

the meanings of the types int and int + int [18, 19].

(3) The typed expressions have meanings, but the untyped expression does

not. It is not sensible to speak of a function that is applicable to all

conceivable values [20].

3. TYPE DEDUCTION AND THE POLYMORPHIC let

3a. Type Deduction

An efficient algorithm has been discovered (independently) by J. R. Hindley and

R. Milner [21,22] that is capable of deducing the valid typings of expressions in our

base language (with the partial exception of inject expressions). It is based upon

the concept of a principal typing of an expression.

A t_yping scheme is a typing containing type variables; more precisely, it is

like a typing except that type expressions may occur in place of types (including

within type assignments). A principal typing of an expression is a typing scheme

such that the valid typings of the expression are exactly those that can be obtained

from the principal typing by substituting arbitrary types for the type variables

(and perhaps extending the type assignment to irrelevant identifiers).

For example, the following are principal typings:

x:s, f: e ÷ ~ I--f(f x): e ,

f: ~-> s I-- %x. f(f x): ~ + ~ ,

I-- If. ~X. f(f X): (~ + ~) ÷ ~ ÷ ~ ,

l--_i:ix(lap. Ix. %y. lehoose y (in. lz. cons n (ap z y)) x):

list ~ ÷ list ~ ÷ list e ,

I--fix(fred. %~. If. %a. Ichoose a (In. %z. f n (red z f a)) %):

list e ÷ (~ ÷ B ÷ 8) ÷ 8 -~ ~ •

Throughout this paper we will use lower case Greek letters as type variables.

clear that the choice of variables in a principal typing is arbitrary.

It is

Hindley and Milner showed that an expression has a principal typing if it has

any typing, and that a principal typing (or nonexistence thereof) of an expression

can be computed from principal typings of its subexpressions by using Robinson's

unification algorithm [23]. Although we will not give a complete description of their

algorithm, its essence can be seen by considering function applications.

When ~ denotes a substitution, we write ~ for the type expression obtained by

applying o to m, and To for the type assignment obtained by applying o to each type

expression assigned by 7. Now suppose that e I and e 2 are expressions with principal

typings ~T 1 I-- el: ~l and ~2 I-- e2: m 2" (For simplicity we assume that ~i and 72

assign to the same identifiers.) Then the set of conclusions of instances of

110

inference rule (15b) whose premises are valid typings of e I and e 2 is

{~ [-- el e2: m' I (~ql' q2' m) ~lql = 7202 = ~

and ~lql = ~ ÷ ~' and ~2q2 = ~} .

Let ~ be a type variable not occurring in ~2 or m2" Since we can extend ~2 to

substitute any type expression for ~, the above set of conclusions is

{~ I-- e I e2: ~' I (~ql' q2' ~) ~i~i = ~2q2 = ~ and ~i~i = (~2 + ~)~2 = ~ ÷ ~'} "

Now we can use unification to determine whether there are any ~I and a 2 such that

~iCl = ~2~2 and mlOl = (m2 ÷ ~)q2 and, if so, to produce "most general" substitutions

°l and °2 such that all such ql and q2 can be obtained by composing {i and @2 with

some further substitution ~. In this case, the set of conclusions is

{# 1--e I e2: ~'] (~ a) ~ = (~i$1)~ and m' = (~$2)~}

This is the set of typings that can be obtained by substitution from

(~ i $ i) I-- e I e2:(~q2) ,

which is therefore a principal typing of e I e 2.

To illustrate the Hindley-Milner algorithm, the following is a list of principal

typings of the subexpressions of the append function, as they would be generated by

a naive version of the algorithm. Note that a proof of a particular typing, such as

is given in Section 2b, can be obtained from the list of principal typings by

substitution. (Also note that the choice of type variables in each line is arbitrary.)

ap: s I--ap:

ap: ~ ÷ 8, z: @ I-- ap z: 8

y: ~ [--y:

ap: s ÷ 8 ÷ y, z: ~, y: 8 I-- ap z y:

n: 7, ap: = + 8 ÷ list y, z: ~, y: 8 I-- c°ns n (ap z y): list 7

n: 7, ap: ~ ÷ ~ ÷ list y, y: ~ I-- lz. cons n (ap z y): ~ ÷ list y

ap: = ÷ 8 ÷ list 7, Y: ~ I-- An. %z. ¢°ns n (ap z y): y ÷ ~ ÷ list 7

Y: ~ I--Y: ~

ap: list ~ + list ~ ÷ list 7, y: list 7 I-

ichoose y (%n. lz. cons n (ap z y)): list y + !is t

ap: list y ÷ list y + list y, y: list y, x: list y l--

ichoose y (In. %z. cons n (ap z y)) x: list

ap: list ~ + list y + list ~, x: list ~ I--

%y. ichoose y (%n. lz. cons n (ap z y)) x: list y ÷ list y

ap: list y + list ? ÷ list y l--

Ix. %y. Ichoose y (in. lz. cons n (ap z y)) x: list y ÷ list ~ ÷ list

111

I-- kap. %x. %y. ichoose y (~n. Iz. cons n (ap z y)) x:

(list ~ + list y ÷ list y) + list y + list y + list y

I-- fi_~x(lap. Ix. %y. ichoose y (%n. %z. cons n (ap z y)) x):

list y + list y ÷ list y

The Hindley-Milner algorithm requires a certain amount of auxilliary information

in the i_.nject operation. If ~ I-- e: ~ is a principal typing of e, then the principal

typing of inject k e should be

I--inject k e: sum(el, ... ' =k-l' m' ~k+l ' an) '

where el, ' Sk-l' ek+l' "'" , a n are distinct type variables that do not occur in

or ~. However, inject k e does not contain any information that determines the

number n of alternatives. Thus we must alter syntax rule (S8a) and inference rule

(I8a) to provide this information explicitly:

E ::= in~ect N K E ~ I-- e: ~k when 1 < k < n .

k e: sum(ml, (I8a') I-- in~ act n ~n)

Similarly (but less pleasantly), we must require the in~ect operation for named

alternatives to contain a list of the identifiers used as names. Rules (S9a) and

(I~a) become:

E ::= in~ecti,...~ I I E

I--e: mk when 1 < k < n . (I9a')

I-in~ect. . i k e: sum(il:~l, ... , in:~n)
ll,...~l n

3b. The Polymorphic let

Suppose we use the reduce function to define the following:

let red = fix(%red. %£. lf. %a.

ichoose a (In. lz. f n (red z f a)) £)

in %%£. red Z£ (%%. Is. add(red % add O) s) 0

Intuitively, if £ is a list of integers, then red £ ad__~d 0 is its sum, so that

%~. %s. add(red £ add O) s is a function that accepts a list of integers and an

integer and produces their sum. Thus the function defined above should sum a list

of lists of integers.

But in fact this expression has no typing. From the principal typing of

fix(lred) and the inference rule (Iii) for let, it is clear that the let

expression can only have a typing if its body has a typing of the form

~, red: list ~ + (~ ÷ B ÷ 8) + 8 ÷ 8 I--

%£~. red ~£ (%~. ls. add(red ~ add O) s) O:

for some particular substitution of types for ~, 8, and e. But the unique type

112

int ÷ int ÷ int of add fo=ces s = $ = int for red Z add 0 to make sense, and then

%£. Is. add(red Z add O) s must have type list int ÷ int ÷ int, so that the outer

occurrence of red requires = = list int, contradicting ~ = int. The difficulty is

that the above definition only makes sense if red is understood as a polymorphic

function, i.e. a function that is applicable to a variety of types.

In designing the type structure of the language ML [22], Milner realized that

his type deduction algorithm permitted the treatment of this kind of polymorphism.

If e 2 has the principal typing ~ I-- e2: ~, and if ~i' "'" ' an are type variables

occurring in m but not in z, then in typing let i = e 2 in el, different occurrences

of i in e I can be assigned different types that are instances of ~ obtain by different

substitutions for =i' "'" ' an" For instance, in the above example, one can assign

the inner and outer occurrences of red the different types

list int ÷ (int ÷ int ÷ int) ÷ int ÷ int

and

list list int + (list int ÷ int ÷ int~ + int ÷ int

to obtain the type list list int + int for the entire example.

In this scheme, however, (in contrast to Section 5b) polymorphic functions can

be bound by let but not by l, so that one cannot define higher-order functions that

accept polymorphic functions. For instance, if we convert let i = e 2 inn e I to

(%i. el) e 2 in the above example, we obtain

(%red. l%%. red ££ (%£. Is. add(red Z add 0) s) O)

(fix(fred)) ,

in which the first line has no typing.

The term "polymorphism" was coined by Christopher Strachey [24], who distinguished

between "parametric" polymorphic:functions, such as the reduce function, that treat

all types in the same way, and "ad hoc" polymorphic functions that can behave differ-

ently for different types. In this paper, we shall reserve the word "polymorphism"

for the parametric case, and call the ad hoe functions "generic". (Strachey's

definition of "parametric" was intuitive; its precise semantic formulation is still

controversial [20].)

3c. Infinite Types

Without explicitly mentioning it, we have assumed that types are finite phrases.

However, nothing that we have done precludes infinite types. For example, the infinite

type

prod(int, prod(int, prod(int, ...)))

is the type of infinite streams of integers, and list ~ can be regarded as

sum(prod(), prod(~, sum(prod(), prod(u, sum(prod(), prod(m)))))).

(Note that prod() denotes a set with one element: the empty record <>.)

113

To make use of such infinite types, however, we must have finite type expressions

to denote them~ i.e. we must introduce the recursive definition of types. A simple

approach is to introduce type expressions with the syntax

::= rectype T:

where T denotes the set of type variables, and the intuitive semantics that

rectype ~: m denotes an infinite type obtained by the endless sequence of substitntions:

~I~ .+ ml~ ÷ m ~ ÷ m

For example, regtype ~: prod(int, ~) denotes the ~ype of infinite streams, while

rectype ~: sum(prod(), prod(u, =)) denotes the type list ~.

It should be emphasized that the rectype construction is a type expression

rather than a type. For example,

rectype ~: prod(int, ~)

rectype 8: prod(int, 8)

rectype ~: prod(int, prod(int, e))

all denote the same infinite type.

If list m is regarded as an abbreviation for rectype ~: sum(prod(), prod(m , a)),

then the various forms of expressions we have introduced for list manipulation can

also be regarded as abbreviations:

nil ~ injecto 1 <>

cons e I e 2 ~ in~ect 2 2 <el, e2>

ichoose e I e 2 E choose(%x, e I , %x. e 2 x.l x.2) ,

where x is an identifier not occurring in e I or e 2.

An obvious question is whether the Hindley-Milner algorithm can be extended to

encompass infinite, recursively defined types. But the answer is obscure. It is

known that the unification algorithm can be extended to expressions involving rectype

(by treating such expressions as cyclic structures and omitting the "occurs" check)

[25,26], and I have heard researchers say that this extension can be applied to the

Hindley-~[iner algorithm without difficulty. But I have been unable to find anything

in the literature about the question.

114

4. SUBTYPES AND GENERIC OPERATORS

In many programming languages there is a subtype relation between types such

that, if m is a subtype of ~', then there is an implicit conversion from values of

type ~ to values of type ~', so that any expression of type m can be used in any

context allowing expressions of type m'. Experience with languages such as PL/I

and Algol 68 has shown that a rich subtype structure, particularly in conjunction

with generic operators, can produce a language with quirkish and counterintuitive

behavior. This experience has led to research on subtypes and generic operators,

using category theory as a tool, that has established design criteria for avoiding

such behavior [27,28].

To see the problem, suppose int is a subtype of reel, and add is a generic

operator mapping pairs of integers into integers and pairs of reals into reals.

Then an expression such as add 5 6, occurring in a context calling for a real

expression, can be interpreted as either the integer-to-real conversion of the integer

sum of 5 and 6, or as the real sum of the integer-to-real conversions of 5 and 6.

In this case, the laws of mathematics insure that the two interpretations are

equivalent(except for the roundoff behavior of machines with unfortunate arithmetic).

On the other hand, suppose di$it strin$ is a subtype of in__~twith an implicit conversion

that interprets digit strings as decimal representations, and equals is a generic

operator applicable to either pairs of digit strings or pairs of integers. Then an

expression such as equals "i" "01" is ambiguous, since the implicit conversion maps

unequal digit strings into equal integers.

4a. Subtypes

We will write m < ~' to indicate that m is a subtype of ~'. Then the idea that

any expression of type m can be used as an expression of type ~' is formalized by the

inference rule

When m < m' (115)

It is natural to assume that < is a preorder, i.e. that it satisfies the laws

(a) (Reflexivity) e ! m

(h) (Transitivity) if m ~ m' and m' ~ ~" then ~ ~ m" .

(This assumption can be justified by noting that the effect of (I15) remains unchanged

if an arbitrary relation ! is replaced by its reflexive and transitive closure.)

Semantically, the laws of reflexivity and transitivity imply the existence of

implicit conversions that must "fit together" correctly if the meaning of our language

is to be unambiguous. For each ~, ~ ~ m implies that there is an implicit conversion

115

that can be applied to any value of type m without changing its type; to avoid ambi-

guity this conversion must be an identity function. When ~ ~ ~' and ~' ~ ~", one can

convert from m to m" either directly or through the intermediary of m'; to avoid

ambiguity the direct conversion from ~ to m" must equal the functional composition of

the conversions from ~ to ~' and from ~ to ~".

Mathematically, these restrictions on implicit conversions are tantamount to

requiring that there be a functor from the preorder of types to the category of sets

and functions (or some other appropriate category) that maps each type into the set

that it denotes, and maps each pair m, m' such that ~ ~ e' into the implicit conversion

function from ~ to m'. This is the fundamental connection between subtypes and

category 1~heory.

If ~ ~ ~' and m' j m then, under a given type assignment, an expression will

have type m if and only if it has type m'. It is tempting to assume that such types

are identical, i.e. to impose

(c) (Antisymmetry) if ~ < ~' and ~' < ~ then ~ = ~'

so that ~ is a partial order. In fact, we will assume that ! is a partial order

throughout this exposition, but it should be noted that most of the theory goes through

in the more general case of preorders, and that one can conceive of applications that

would use such generality (e.g., where ~ and ~' denote abstractly equivalent types

with different representations).

For each of the type constructors we have introduced, the existence of implicit

conversions for the component types induces a natural conversion for the constructed

type. For instance, suppose c is an implicit conversion from m2 to ml and c' is an

' Then it is natural to convert a function f of type implicit conversion from m~ to m2"

' If this conversion of ~i ÷ ~i' to the function ~x~2. c'(f(c x)) of type ~2 ÷ ~2"

' to m2 ÷ m2' then the functions is taken as an implicit conversion from ml ÷ ~i

operator + will satisfy

' ~ ' then ~I + ' < ~2 + ' (<a) If ~2 ~ ml and ml ~2 ~i -- m2 '

i.e. + will be monotone in its second operand but antimonotone in its first operand.

If el, ... , Cn are implicit conversions from ml to m~, ... ' mn to m'n, then it

• > of type pr0d(ml , mn) to the record is natural to convert a record <Xl, .. ~ x n

<c I Xl, ... , c n x n> of type prod(~, ... , ~). Thus prod should be monotone in all

of its operands:

, < ~' then pr0d(~l, , < prod(~ ~) (<_b) If ~i ~ ~i ~n-- n "'" ~n) -- ' "

Similarly~ for products with named fields, we have

_ < ~' then If ml < ~]\' "'" ' ~n -- n

pr°d(il:m I in:m n) ! pr°d(il:m ~ in:m~) . (<__c)

116

In this case, however, there is another kind of conversion that is both well-behaved

and useful: if <il:Xl, ... , in:Xn > is a record of type prod(if:el, ... , in:e n),

and if {il, ... , i m} is any subset of {il, ... , in}, then by forgetting fields it is

natural to convert this record to " • i :x >. This leads to <ll'Xl' "'" ' m m

prod(il:e I , in:en) ~prod(il:el, ... , im:~ m) when 0 < m < n . (<_d)

(Theoretically, field-forgetting conversions are also applicable to records with

numbered fields, but the constraint that the field numbers must form a consecutive

sequence renders these conversions much more limited.)

If c I , c n are implicit conversions from e I to el, ... , e n to ~, then it

is natural to convert inject k x of type sum(el, ... , en) to inject k (c k x) of type

sum(e i e~). Thus sum is also monotone:

< m' then sum(el, ... , en) < sum(e i m') . (<e) If ~i ~ mi' "'" ' ~n-- n n

Similarly, for named alternatives we have

< e' then If e I ~ el en-- n (<_f)

sum(il:e I, ... , in:e n) ~ sum(i l'.e I,' ... , in:~ ~) •

Just as with products, however, names give a richer subtype structure than numbers.

Whenever {il, i m} is a subset of {il, ... , in} , sum(il:el, ... , im:e m) is a

subset of sum(il:el, ... , in:en) , and the identity injection is a natural implicit

conversion. Thus

sum(il:el, ... , im:em) ~ su____mm(il:el, ... , in:e n) when 0 < m < n . (<_g)

The implicit conversions of forgetting named fields in products and adding named

alternatives in sums have been investigated by L. Cardelli [29], who shows that they

generalize the subclass concept of SIMULA 67 and also provide a suitable type structure

for object-oriented languages such as SMALLTALK.

Finally, if c is an implicit conversion from e to e', then it is natural to

convert (Xl, ... , Xn) of type list e to (c Xl, ... , c x n) of type list e', so that

list is also monotone:

If e ~ ~' then list m < list m' . (<_h)

4b. Explicit Minimal Typing

With the introduction of subtypes, it is no longer possible to achieve explicit

typing in the sense of Section 2c, since an expression that has type e under some

type assignment will also have type ~' whenever e ~ e'. However, we can still hope

to arrange things so that, if an expression (under a given type assignment) has any

type, then its set of types will have a least member (which must be unique since

is a partial order).

117

We write

l--m e: 9 ,

called a minimal typing,to indicate that 9 is the least type of e under z. In other

words ~ I- m e: 0~ means that z I-- e: 9' holds for just those 9' such that ~ ! ~''

If the expressions of our base language are to have minimal typings then the

partial ordering of types must satify two dual properties:

(LUB) If ~i and 9 2 have an upper bound then ~i and ~2 have a least

upper bound.

(GLB) If ~01 and ~2 have a lower bound then ~i and ~2 have a greatest

lower bound.

Fortunately these properties are consistent with the ordering laws given in the

previous subsection. It can be shown that the least partial ordering satisfying

(<__a) to (~h) and including some partial ordering of primitive types will satisfy

(LUB) and (GLB) if the partial ordering of primitive types satisfies (LUB) and (GLB).

(Moreover, this situation will remain true as additional ordering laws are introduced

in Sections 4d and 4e.)

To see why these properties are needed for minimal typing, consider the

conditional expression. Suppose ~]--__ e: bool, ~ I--~__ el: 91 , and ~ l--m e2: 9 2 •

Then the types 9 such that ~ I-- if e then e I else e2: ~ will be the upper bounds of

and ~2' so that ~ I-- m if e then e I else e2:9 will only hold if ~ is a least upper

bound of 91 and 9 2 .

(By a similar argument, the minimal typing of case e of (el, ... , e n) requires

that, if the finite set {~i' "'" , 9 n} has an upper bound, then it must have a least

upper bound. Fortunately, for n > 0 this property is implied by (LUB).)

Assuming that (LUB) and (GLB) hold, we can give inference rules for the explicit

minimal typing of our base language that effectively define a partial function mapping

each e and[~ into the least type of e under ~. As with the explicit typing in the

absence of subtypes described in Section 2c, we must require type information to

appear in lambda expressions, inject expressions for numbered alternatives, and the

expression nil~ and we must exclude the vacuous expressions choose() and case e of O.

But now, type information is no longer needed in inject expressions for named alter-

natives, because of the implicit conversions that add alternatives. If 9 is the least

type of e then sum(i:~) is the least type of inject i e.

(It is curious that numbered alternatives require less type information under

the Hindley-Milner approach of Section 3a, while named alternatives require less type

information under the present approach.)

The following is a list of the inference rules for minimal typing. In the

provisos of some of the rules, we write lub for least upper hound and glb for greatest

lower bound.

118

I--mi: e
when i is in the domain of ~, and ~ assigns e to i. (MI)

I-- m true: bool z I-- m false: bool (M2,M3)

I-- m add: int + int ÷ int ~ I-- m equals: int ÷ int ÷ bool

~, i: e I--m e: ~' ~ Im e!: el + e'

I-~ el: ~i

I-~ en: e n

Im e I e2: e'

• . , >: prgd(e I, .. e n) J- <e l, . e n . ,

when m 2 ~ ~i

I-- m e: prod(e I mn)
when i < k < n

Im en: en

• • •.. i :e >: prod(il:m I, <ll'el' ' n n "'' ' in:en)

e: prod(il:e I in:e n)

I-- m e.ik: e k

I-- m e: mk

I-- m inject i e n

Im el: ~i + el

l--m en: ~n + e' n

when 1 < k < n

k e: sum(el, ... , e n)

when i < k < n

when m' is the lub of

Im

Im

choose(e I , en): sum(m I , ~n) ÷ e'

e: e

inject i e: sum(i:e)

(M4)

(M5)

(M6a)

(M6b)

(M7a)

(M7b)

(M8a)

(M8b)

(M9a)

119

! [m el: ~i ÷ ~i

'-m + Mt en: ~n n

when ~' is the lub of

{~L ' ~'}n

I-- m choose(il:e I, ... , in:en): sum(il:~ 1 , in:e n) ÷ ~'

(M9b)

l--nil : list
I m

I--m el: ~i when m is the lub

I-- m e2: list ~2 of ~i and ~2

I-- m cons e I e2: list

(MlOa,b)

I--mel: ~

= i--me2: ~1 + lis~ ~2 + w~
[-- m ichoose e I e2: list e + ~'

' and ' when ~' is the lub of ~i ~2

and e is the glb of ~i and ~2
(MlOc)

I-- m e2:

~, i: ~ I-- m el: ~'

[--m let i = e 2 in el: ~'

(ml)

I--m e: %
I--m el: ~i when ~0 < bool and m is

I--m e2:~2 the lub of ~i and ~2

I-- m if e then e I else e2:

(MI2)

Im e: ~0

[-- m el: m I when ~0 < int and ~ is the

• lub of {~i' ''' ' ~n }

I-~ %: %

I-- m case e of (e I en): ,.~

(m3)

....... " ' when e2 ~ ml (MI4)
I-- m f~i~ e: ~2

4c. Generic Operators

We now consider extending our base language to include primitive operators that

act upon values of several types, performing possibly different operations for

different types. For example, if the partial ordering of primitive types is

real

I
i n t

bool

120

we might want

and equa!s to

case we would

I-- el: __

I-- e2:

I--,a,d d

add to denote integer addition, real addition, and boolean disjunction,

denote equality tests for integers, reals, and truth values. In this

replaceinference rules (14) by

int # [-- el: real

int ~ I-- e2: real

e I e2: in__~t ~ I-- ad__~d e I e2: real

I - el: bool

[-- e2: boo l

[-- add e I e2: bool

[-- e l : int ~ [-- el : r e a l ~ [-- e l : bool

I-- e2: int ~ I-- e2: real ~ I-- e2: bool

l-- equals e I e2 :boo1 ~ [-- e q ~ i s e I e2: bool # [-- equals e I e2 :boo1

The general situation, for an n-ary operator op, can be described as follows:

there will be an index set r and functions ~i' "'" ' en' p from r to ~ such that the

inference rules for op will be the instances of

~[-

el: ~I Y

(14')

an: any

. . : py [--Op e I • e n

f o r each index y i n r .

For example, our g e n e r i c add o p e r a t o r would be d e s c r i b e d by r = {in__~t, r e a l , boo l} ,

wi th ~1' ~2' and p a l l be ing the i d e n t i t y i n j e c t i o n from r to ~. The equa ls o p e r a t o r

would be d e s c r i b e d s i m i l a r l y , excep t t h a t p would be a c o n s t a n t f u n c t i o n g i v i n g boo l .

An obvious question is under what conditions this kind of inference rule scheme

provides minimal typing. A sufficient condition is that F must possess a partial

ordering such that

The function =I' "'" ' ~n' and p are all monotone and, for all

~i' "'" ' ~n' if the set

{Y I ~ l ! ~1 ~ ~n ! anY} (*)
is nonempty, then this set possesses a least member.

If this condition is satisfied (as is the case for ad~d and equa!s) then minimal typing

is given by the rule

I-- m e l : 91
: when YO is the least member of

{T [m I ! SlY, "'" , mn ~ enY} (M4')

[--m oP e l .., en: P7 0

Semantically, however, there is a further issue. If the meaning of our language

is to be unambiguous, then the meanings of opfor various indices must satisfy the

following relationship with the implicit conversion functions:

121

-- ÷ py For each index y, let opy be the function of type ~I 7 -~ ... ÷ ~n Y

that is the meaning of o_i [for y For types m and m' such that m < ~'

let c <_m, be the conversion function from m to ~'. Then for all indices

y and y' such that y --< y', and all values Xl, ... , Xn of types ~iy , ... ,

~ny , ~y and Irpy, must satisfy

Cpy_<py,(op--- 7 x I ... Xn) = 5~y,(c~iy_e< IY' Xl) ... (C~nY_~ny< ' xn)"

In conjunction with (*), this relationship (which can be expressed category-

theoretically by saying o-~ is a certain kind of natural transformation) is sufficient

to preclude ambiguous meanings.

For our examples of add and equals, the relationship becomes

Cint_<real~-d~in t x I x 2) = a-~real(Cint_<rea I x I) (Cint<real x 2)
and

equ-~in t x I x 2 = equ---4-~real(Cint<real Xl)(Cint_<real x 2) •

The condition for add is the classical homomorphic relation between integer and real

addition, while the condition for equals (assuming the meanings of equalsareequa!ity

predicates) is equivalent to requiring Cint_<rea I to map distinct integers into

distinct reals. Note that there is no constraint on addbool or equalSbool.

4d. The Universal Type

Suppose we expand the partially ordered set of types by introducing a new type

that is a subtype of every type:

For all m, univ <

Several pleasantries occur.

choose operations:

J--I~ e:~o

I---_ case e of (): univ
a~

(_<i)

We can give minimal typings for the vacuous case and

when mO < int (MI3')

I--.~ choose(): sum() ÷ univ
(M8b ')

for an in__ject operation for numbered alternatives with less explicit type information:

J-- e: m_ when 1 < k < n
K

J--m injeCtn k e: sum(univ univ, ~k' univ, ... , univ)

(M8a')

and for a nil expression without type information:

I--mnil: list univ (MlOa')

122

Less happily, however, the introduction of univ complicates the nature of

generic operators by making (*) in the previous subsection harder to satisfy.

For instance, taking ~i = "'" = en = univ, (*) implies that F, if nonempty, must

have a least element.

For our example of ad__~d and equals, the introduction of univ forces us to add

a least index (which we will also call univ) to F, with ~i univ = e 2 uniy = p univ

= univ (except that we could take p univ = bool for equals). In effect, we must

introduce vacuous versions of add and equals corresponding to the inference rules

I-- el: univ ~ I-- el: univ

I-- e2: univ ~ I-- e2: univ

I-- add e I e2: univ ~ I-- equals e I e2: univ (or bool)

Semantically, one can interpret univ as denoting a domain with a single element

±univ' with an implicit conversion function to any other domain that maps ±univ into

the least element of that domain. A more intuitive understanding can be obtained

from the following expressions of type univ:

case 1 of ()

fix(Xx . • x)
unlv

If evaluated, the first expression gives an error stop and the second never terminates.

These are both meanings that make sense for any type.

de. The Nonsense Type

We have developed a system in which, for a given type assignment, every expression

with a type has a least type, but there are still nonsensical expressions with no

type at all. Thus the function that maps e and ~ into the least type of e under

is only partial.

To avoid the mathematical complications of partial functions, we can introduce

a new type of which every type is a subtype,

For all ~, ~ ~ n s (<~)

and make n~s a type of every expression by adding the inference rule

I-- e: n__ss (116)

Now (under a given type assignment), since even nonsensical expressions have

the type ns, every expression has at least one type, and therefore a least type.

The inference rules for minimal typing remain correct if one adds a "metarule"

that zl-- m e: n s holds whenever z I-- m e: ~ cannot be inferred for any other ~.

This idea was introduced by the author in [27]. Today, I remain bemused by

its elegance, but much less sanguine about its practical utility. The difficulty

is that it permits nonsensical expressions to occur within sensible ones. For

example,

123

(kXns. 3)(add i ni_~

<3, add i nil>.l

are both integer expressions containing the nonsensical subexpression add 1 nil.

Abstractly, perhaps, they have the value 3, but pragmatically they should cause

compile-time errors.

4f. Open questions

As far as I know, no one has dealt successfully with the following questions:

Can the above treatment of generic operators be extended to the definition of such

operators by some kind of let construction? Can the Hindley-Milner algorithm be

extended to deal with subtypes? Can the theory of subtypes be extended to encompass

infinite, recursively defined types?

5. TYPE DEFINITIONS AND EXPLICIT POLYMORPHISM

5a. Type Definitions

In this section we will extend the explicitly typed language of Section 2c

to permit the definition of types. We begin by adding ~ ::= T to the definition

of ~, so that $~ becomes the set of type expressions built from the type variables

in T. Then we introduce the new expressions

E ::= lettype T = ~ in E I lettran T = ~ in E

which satisfy similar reduction rules

lettype ~ = ~ in e = e ~ -> lettran ~ = ~ in e = e l -- ~0 -- a-+t0

where the right sides denote the result of substituting ~ for ~ in the type

expressions embedded within the explicitly typed expression e. (Both lettype and

lettran bind the occurrences of ~ in the type expressions embedded in e.)

The difference between lettype and lettran lies in their inference rules:

when ~ does not occur (free) (El7)

I-" lettype ~ = ~ __in e: (~'I~ + ~) in any type expression

assigned by

I-- (eI~ ,÷ ~): ~'
u (E18)

I-- lettran ~ = m i__n e: ~'

The second rule shows that lettran ~ = ~ in e is a transparent type definition that

simply permits ~ to be used as a synonym for ~ within e. It makes sense whenever

I makes sense (and has the same meaning). e u+ ~

On the other hand, lettype e = ~ in e is an opaque or abstract type definition,

which only makes sense if e makes sense when e is regarded as an arbitrary type~

independent of ~.

(S17,S18)

(RI7,RI8)

124

The proviso that ~ must not occur free in any type expression assigned by ~ is

necessary since ~ has independent meanings inside and outside the scope of lettype.

For example, without this proviso we could infer

f: ~ ÷ ~ [-- %x . f x: a ÷

f: e ÷ ~ I-- lettype ~ = int in %x . f x: int ÷ int

I-- %f . lettype ~ = int in lx . f x: (s ÷ 5) ÷ int + int

I-- lettype ~ = bool in If ÷ e" lettype ~= int in Ax e . f x:

(hool ÷ bool) ÷ int + int

But two applications of (RI7) reduce the expression in the last line to

%fbool + bool" %Xint f x ,

which has no type.

Our main interest is in abstract definitions, in which the "abstract type"

is defined by a "representation" ~. However, for such a definition to be useful,

one must be able to include definitions of primitive functions (or constants) on

the abstract type in terms of its representation. This seems to require a more

complex definitional expression such as

E ::= lettype T = ~ with I n = E, ... , I n = E i~n E (S19)

where each triplet I n = E specifies an identifier denoting a primitive function,

its type in terms of the abstract type, and its definition in terms of the represen-

tation. For example,

lettype complex = prod(real, real)

with icomple x = <0, i>,

addc =
complex + complex + complex

%Xprod(real, real)" ~Yprod(real, real)"

in ...

<add x.l y.l, add x.2y.2>

However, because our language provides higher-order functions, this more complex

definitional form can be defined as an abhreviation in terms of the original lettype

construct:

= = - - lettype s = ~ with il~ I el, ... , inm n e n in e

(lettype ~ = m in %ii~ 1 %in~ n. e) e I ... e n

This definition reduces to

I Ill el, ÷ e ->

"'" ' in n

(where because of the effect of bound-identifier renaming, the substitution of the

ek's for ~'s is simultaneous), which embodies the right semantics. More critically,

one can derive the inference rule

125

~, il:~ I, "'" , in:m n I--e: ~0

I-" el: '~II ~ -+

I-" en: .mnl~ .+ c0

I-- lettype ~ = m with il0~l

when ~ does not occur (free)

in any type expression

assigned by
(El9)

i

= el, ... , i = e n in e: mO{{ n~,~ n

which captures the notion of abstraction since ~ does not occur in the typing of e.

(Some authors [30] have suggested that the principle of abstraction necessitates a

restriction on this rule that = should not occur (free) in ~0' so that m01~ + ~ =
~0

i

and the type of the lettype ... with ... expression is the same as the type of its

body. This restriction is also justified by the alternative definition of the

lettype ... with ... expression that will be given in Section be.

For full generality, we should further extend lettype to permit the simul-

taneous definition of several abstract types with primitive functions, e.g.

!et1~ype point = ... , line = ...

witl~ intersectline ~ line ~ point = "'" '

c°nneCtpoint + point + line = "'"

in ...

Such a generalization can still be defined in terms of our simple lettype, but the

details are messy.

It is an open question how this kind of type definition can be combined with

the subtype discipline of Section 4. There are clearly problems if the prograrmmer

can define his own implicit conversions. But even if he can only select a subset

of the conversions that are induced by existing conversions between representations,

it is not clear how to preserve the conditions (LUB) and (GLB) of Section 4h.

5b. Explicit Polymorphism

In [31], I defined a language that has come to be known as the polymorphic, or

second-order typed lambda calculus, in which polymorphic functions can be defined

by abstraction on type variables, and such functions can be applied to type

expressions. (Somewhat to my chagrin, it was only much later that I learned that

a similar, somewhat more general language had been invented earlier by J.-Y. Girard

[32].)

This facility can be added to our explicitly typed base language (with type

variables permitted in type expressions) by introducing the new expressions

E ::: AT. E I E[~] ($20)

in which A binds type variables just as % binds identifiers, with the rule of type

beta reduction:

(As. e)[~] = el~l ÷ ~ (R20)

126

For example,

As. If . Ix . f(f X)

is a polymorphic "doubling" function that can be applied to any type to obtain a

doubling function for that type, e.g.

(As. If . lx . f(f x))[int] f(f x) 5 ÷ 5 5 = ifint ÷ int" lXint"

(As. If . lx . f(f x))[real + bool] =

If(real + bool) ÷ (real ÷ bool)" lXreal + bool"
f(f x) I

Less trivially,

As. fix(laPlis t 5 ÷ list = + list e" lXlist 5" lYlist e'

lehoose y (in . IZlist . cons n (ap z y)) x)

is a polymorphic function that, when applied to a type 5, yields a function for

appending lists of type list 5. Similarly,

As. AS. fix(iredlist ~ + (e ÷ 8 + 8) ÷ 8 ÷ 8"

lZlist ~" If5 + 8 ÷ 8" laB"

ichoose a (In 5. IZlist 5" f n (red z f a)) £)

is a polymorphic function that, when applied to types e and 8, yields a function for

reducing lists of type list 5 to values of type 8.

Even in 1974, the idea of passing types as arguments to functions was fairly

widespread. The novelty was to extend the set of type expressions to provide types

for polymorphic functions that were sufficiently refined to permit explicit typing:

::= AT.

Here A is an operator that binds type variables within type expressions. (Note that

this implies that bound type variables can be renamed. We will regard renamed type

expressions such as As. ~ ÷ ~ and AS. 8 ÷ 8 to be identical.) The idea is that if

e has type e' then As. e has type Ab.~', and if e has type As. ~' then e[~] has type

~'I Thus the polymorphic functions of type As. ~' can be thought of as
I

functions that, when applied to a type 5, give a value of type ~'.

For example, the types of the polymorphic doubling, append, and reduce functions

given above (under the empty type assignment) are:

As. (5+~) ÷~÷~ ,

AS. list 5 ÷ list 5 + l!9,t5 ,

As. AS. list ~ ÷ (5 ÷ 8 ÷ 8) ÷ ~ +

More precisely, explicit typing is provided by the inference rules

I-- e: e' when e does not occur free
(E2Oa)

in any type expression
I-- As. e: As. m I

assigned by

127

and

I- e: As. ~'
(EZOb)

J- e[~]:(~' ~ ÷ ~)

Once type abstraction and application have been introduced, the lettype

expression of the previous subsection can be defined as an abbreviation (just as

the ordinary le____ttean be defined in terms of ordinary abstraction and application):

lettype ~ = m i__nn e E (As. e)[m]

From this definition, one can use reduction rule (R20) to derive (RI7), and inference

rules (E2Oa) and (E20b) to derive (El7).

More important, we have a notion of explicit polymorphism that includes that of

Section 3b, but goes further to permit higher-order functions that accept polymorphic

functions, albeit at the expense of a good deal of explicit type information. For

instance,, we can mirror the example of a polymorphic let in Section 3b by

let red = "polymorphic reduce function" in

~£1ist list int" red[list in__!t , int] ~

(%£1ist int" %Sint" add(red[int, int] £ add O) s) 0 .

But now we can go further and rewrite this let as the application of a higher-order

function to the polymorphic reduce function:

(~redA~. A6, list e ÷ (~ ~ 6 ÷ 6) ÷ ~ + B"

l%£1ist list int" red[l!~ in__~t, int] %£

(%%list int" %Sint" add(red[int' in__~t] £ add O) s) O)

("polymorphic reduce function")

5c. Higher-Order Polymorphic Programmin$

At first sight, functions that accept polymorphic functions seem exotic beasts

of dubious utility. But the work of a number of researchers sugests that such

functions may be the key to a novel programming style. They have studied an austere

subset of the language we are considering in which the fixpoint operator fix is

excluded, and have shown that this restricted language has extraordinary properties

[32,33]. On the one hand, all expressions have normal forms, i.e. their evaluation

always terminates (though the proof of this fact requires "second-order arithmetic"

and cannot be obtained from Peano's axioms). On the other hand, the variety of

functions that can be expressed goes far beyond the class of primitive recursive

functions. (Indeed, one can express any program whose termination can be proved in

second-order arithmetic.) Beyond this, they have shown that certain types of

polymorphic functions provide rich structures akin to data algebras. [20, 34, 35].

(In particular, every many-sorted, anarchic, free algebra is "mimicked" by some

128

polymorphic type.)

Our purpose here is not to give the details of this theoretical work, but to

illustrated the unusual programming style that underlies it. The starting point

is a variant of the way in which early investigators of the (untyped) lambda

calculus encoded truth values and natural numbers.

Suppose we regard boo l as an abbreviation for a polymorphic type, and true

and false as abbreviations for certain functions of this type, as follows:

bool E A ~ . ~ ÷ (~ + ~) ,

true - As. Xx . %y . x ,

false - As. lxu. lye. y

Then, when e I and e 2 have type ~, we can define the conditional expression by

if b then e I else e 2 = h[~] e I e 2

Moreover, we can define such functions as

not - %bbool. A~. lx . ly . b[e] y x ,

and = lbbool. %Cbool. As. %x s. %y . b[~](c[~] x y) y

Similarly (ignoring negative numbers), we can define .in t and the natural numbers by

int = As. (~ + ~) -> (s -> ~) ,

0 = As. kf . lx. x ,

1 - A~. %f . %x. f x ,

n -= As. If . %x. fn x ,
s-~ @ s

where fn x denotes

f(... (f x) ...) ,
% %, i

n times

so that the number n becomes a polymorphic function accepting a function and giving

its n-fold composition. (For example, 2 is the polymorphic doubling function.)

Then we can define the function

• • f(n[~] f x) succ -= %nin t. As. ~f + ~ %x s

that increases its argument by one.

Now suppose g of type int -> m, c of type ~, and h of type ~ -~ e satisfy the

equations

g0=c ,

g (n + I) = h (g n) .

Then g n = h n c, so that

g = %nin t. n[~] h c

129

For example (taking m = int),

add m 0 = m , add m (n + i) = succ(add m n) ,

so that

add m = %nin t. n[int] succ m ,

or more abstractly,

add ~ Xmin t. Xnin t. n[i nt] succ m ,

Similarly, we can define

mult E %min t. lnin t. n[int] (add m) 0 ,

exp E lmin t. %nin t. n[int] (mult m) 1

More generally, suppose f of type int + m, c of type m, and h of type int + ~ ÷

satisfy the equations

f 0 = c , f (n + i) = h n (f n)

Let g of type int ÷ int ~ ~ be such that g n = <n, f n>, (where ~ x ~' is ~rod(~,~')).

g 0 = <0, c> ,

g (n + i) = <n + i, f (n + i)> = <succ n, h n (f n)>

= (lZint x ~" <succ z.1, h z.1 z.2>) <n, f n>

= (lzint x ~" <suet z.l, h z.l z.2>) (g n)

Thus by the argument given above,

g = Xnin t. n[int x ~] (%Zin t x <succ z.l, h z.l z.2>) <0, c> ~°

so that

f = Xnin t. (n[int x ~] (XZin t x ~" <suec z.l, h z.l z.2>) <0~ c>), 2

Thus if we define primrec of type As. (in__~t ÷ ~ ÷ ~) + ~ ÷ int + ~ by

primrec E A~. lhin t + ~ + e" %c .

%nin t. (n[int x ~] (%Zin t × . <succ z.l, h z.l z.2>) <0, c>).2 ,

then f = primrec[m] h c.

For example, since the predecessor function satisfies

pred 0 = 0 , pred(n + i) = n = (%nin t. %min t. n) n (pred n) ,

we can define

pred 5 primree[int](lnin t. lmin t. n) 0 ,

and since the factorial function satisfies

fact 0 = 1 , fact(n + i) = mult n (fact n) ,

we can define

fact E primrec[int] mult 1 .

180

Moreover, we can define functions from integers to other types. For example,

primrec[list int.] cons (nilin t) is the function from int to list int that maps

n into (n - i, ... , 0).

However, our ability to define numerical functions is not limited to the scheme

of primitive recursion. For example~ the exponentiatlon laws fm.fn = fm+n and

(fm)n = fm×n lead to the definitions

add E lmin t. lnin t. As. Af ÷ s" %xs" n[a] f (m[=] f x) ,

mult -- Imin t. lnin t. As. If . n[s](m[a] f)

and the law (If. fm)n = If. f (mn) (which can be proved by induction on n) leads to

exp 5 lmin t. inin t. As. n[s + s](m[s])

More spectacularly, suppose we define

aug E %fint + int" lnint" succ n [int] f 1 ,

of type (int ÷ int) ÷ int + int. Then

aug f 0 = f 1 , aug f (n + i) = f(aug f n) .

Thus, if we define

ack E Imin t. m[int ÷ intJ aug succ ,

of type int + int ÷ int, we get

ack 0 =succ , ack (m + I) = aug (ack m) ,

so that

ack 0 n = n + 1 ,

ack (m + i) 0 = aug (ack m) 0 = ack m 1 ,

ack (m + I) (n + i) = aug (ack m) (n + I) = ack m (aug (ack m) n)

= ack m (aek (m + i) n) ,

i.e., Inin t. ack n n is Ackermann's function.

In addition to the primitive types int and bool, various compound types can be

defined in terms of polymorphic functions. For numbered products we can define

• -> s) -~ s prod(~ I ~n) E As. (~i ÷ "'" ÷ ~n

and, when e I , e n have types ml' ~n and r has type prod(m I , Wn) ,

> = As. If . f e I ... e n , <el' "'" ' en ml ÷ "'" + ~n ÷ s

r.k - r[~k] (lXl~ 1 lXn~ n. Xk) ,

since we have the reduction

<el~ ... , en>.k

= (As. %f~l + .-° ~ ~n + s" f el "'" en) [~k](%Xl~ I %Xn~ n" Xk)

= (%f~l + .." + ~n + ~k" f el ''" en)(%Xl~l %Xn~n' xk)

131

= (lXl~ I lXn~ n- x k) e I ... e n = e k

Similarly, for numbered sums, we can define

sum(~ 1 ~n) - A~. (~I + ~) ÷ "'" + (~n + ~) ÷ ~

and, when e has type ~k and fl' "'" ' fn have types w I ÷ ~, "'" ' ~n + ~"

inject k e = As. lhl~ 1 ... lh . h k e ,
--~l,...,~n -> ~" no~ n -> a

ehoose(fl, ... , fn) = XSsum(~l,...,~n). s[~] fl "'" fn '

since we have the reduction

" k e) ch°°se(fl' "'" ' fn)(in3ect~l ~n

= (lSsum(~l,...,~n). s [~] fl "'" fn)(A~" %hl~ I -> ~ lhne n + . ~ e)

= (As. %hl~ I -> e lhn~ n ÷ . h k e) [~] fl "'" fn

= (~hl~ I ÷ ~ ~hn~ n ÷ . h k e) fl "'" fn = fk e

Finally, we consider lists, drawing upon a discovery by C. B~hm [35].

list ~ -= AS. (~ + 8 -> S) + S -> S ,

with the idea that, if £ = (Xl, ... , x n)

£[~'] f a = f x I (f x 2 ... (f x n a)

In other words, we regard a list as its own reduce function.

nil = AS. kf la S. a
--~ ÷ S ÷ 8'

and, when e I has type ~ and e 2 has type list ~,

cons e I e 2 -- AS. %f + S "~ 8" kas" f el (e2 f a)

Now we can carry out a development analogous to that for natural numbers.

If g of type list ~ ÷ ~', c of type ~', and h of type m ÷ m' + ~' satisfy

g nil = c , g(cons x Z) = h x (g i) ,
~ & 0

then

g = %~list ~" ~[~'] h c .

For example, consider the function rappend, of type list m ÷ list m ÷ list ~,

that is similar to the append function but with interchanged arguments. Since this

function satisfies

rappend m nil = m , rappend m (cons x %) = cons x (rappend m %) ,

we have

rappend m = AZlist ~" £[list ~] (%x . %Ylist ~" cons x y) m ,

and thus

append - l%list . %mlist . ~[list ~] (lx . lYlist . cons ~ x y) m

We define

, f has type ~ ~ ~' + ~' and a has type ~'

• ,,)

Then we define

132

Next, consider the function flatten, of type list list m ÷ list e, that appends

together the elements of its arguments. Since this function satisfies

• : nil flatten (cons x £) = append x (flatten %) flatten nillist m --m ,

we have

%[list ~] append nil flatten E %£1ist list ~" --~

By similar arguments,

length ~ %%list m" %[int] (%x , %Yint" succ y) 0 ,

sumlist E l%list int" %[int] add 0 ,

mapcar ~ ~£1ist ~" ~f~ + ~,. %[iis% m'] (~x m. ~Ylist ~' cons (f x) y) nil ,

£[bool] (ix . false) true null ~ %%list ~" %Y5ooi" "

~[~] (Ix . X) error car m %%list ~" ly .

More generally, suppose f of type list ~ + ~', e of type m' and h of type

÷ list ~ ÷ m' + ~' satisfy

f nil = c f(cons x %) = h x % (f Z)

Let g, of type list m ÷ (list m) x m', be such that g % = <%, f £>. Then

g ni__!l m = <ni___ll , c> ,

g (cons x ~) = <cons x %, f (cons x %)> = <cons x %, h x % (f %)>

= (%x • kZ(lis t ~) x ~'" <c°ns x z.l, h x z.l z.2>) x (g £) ,

so that

= %[(list ~) × ~']
g ~%list ~"

(%x . %Z(lis t m) x ~'" <cons x z.l, h x z.l z.2>) <ni_~l , c>

and f £ = (g %).2. Thus, if we define

listrec E A~. AS. lh ÷ list ~ ÷ 8 ÷ 8" %c~. %%list ~"

(%[(list ~) x ~](%x . lZ(lis t ~) x ~" <cons x z.l, h x z.l z.2>)<ni__~l , c>).2

we have f = listrec[~][m'] h e.

For example, since cdr of type list m ÷ lis A ~ satisfies

cdr nil = error , cdr(eogns ~ x £) = % ,

we can define

cdr E listrec[~][list w](%x . %Ylist m" %Zlist ~" y) error ,

and s i n c e , w h e n a h a s t y p e ~ ' a n d f h a s t y p e ~ ~ l i s t ~ ÷ ~ '

Ichoose a f nil = a , ichoose a f (cons x %) = f x £ ,

we can d e f i n e

ichoose a f ~ listrec[~][~'](~x . XYlist . %z, f x y) a

133

Less trivially, consider the function insertandapply, of type in__~t÷

(list int ÷ list int# + list-int + list int, such that when % is an ordered list

of integers, insertandapply n f £ inserts n into the proper position of E and

applies f tothe portion of % following this position. This function satisfies

insertandapply n f nilin t = cons n (f nilin t)

insertandapply n f (cons x %) =

if n < x then cons n (f (cons x £)) else cons x (insertandapply n f £) ,

so that we can define

insertandapply E lnin t. Iflist int ~+ llst int" llStrec[int][list int]

(IXint" %%list int" Imlist int"
if n < x then cons n (f (cons x £)) else cons x m)

(cons n (f ni!int))

Then let merge, of type list int ÷ list int + list int, be the function that merges

two ordered lists. This function satisfies

merge nilin t = lmlist int" m ,

merge (cons x ~) = insertandapply x (merge £) .

Thus we can define

merge E %%list int" %[list int ÷ list int.] insertandapply (lmlist int" m)

Semantically, the introduction of type abstraction and application raises thorny

problems. Since~ in the absence of fix, all programs terminate, one might expect to

obtain a semantics in which types denote ordinary sets and ~ + ~' denotes the set of

all functions from ~ to ~'. But it can be shown that no such set is possible [36].

(Specifically, one can show that if the polymorphic type

A~. (((S + bool) + bool) + ~) ÷

denoted some set, then from this set one could construct a set P that is isomorphic

to (P ÷ b_j)ol) ÷ bool, which is impossible.)

The only known models [18,19] are domaln-theoretlc ones that give a semantics

to the language with fix as well as without. Moreover, polymorphic types in these

models denote huge domains that include generic functions that are not parametric

in the sense of Strachey [24].

It should be mentioned that [18] and [19] provide models for a more general

language than is described here, in which one can define functions from types to

types and (in a somewhat different sense than in Section 3c, recurslvely defined

types.

134

5d. Type Deduction Revisited

As the examples in the last subsection have made all too clear, explicit typing

requires a dismaying amount of type information. This raises the problem of type

deduction.

Consider taking an explicitly typed expression and erasing all type information

by carrying out the replacements

%i . e ~ %i. e A~. e = e e[m] = e

(For simplicity, we are only considering the pure polymorphic typed lambda calculus

here, as defined by syntax equations (SI), (S5a,b) and (S20a,b).) This erasure maps

our language back into the original (lambda-calculus subset of the) base language.

But now the base language has a richer type structure than in Section 2b, since

A~. ~ remains a type expression and inference rules (E20a,b) become

I-- e: ~' free
(I20a)

when ~ does not occur

in any type expression

assigned by

(120b)

An obvious question is whether one can give an algorithm for type deduction

(in the sense of Section 3a) with these additional rules, i.e. (roughly speaking)

an algorithm for recovering the erased type information. The answer, however, is

far from obvious; despite strenuous efforts the question remains open. However,

it has proved possible to devise useful but more limited algorithms that allow the

programmer to omit some, though not all, type information [37,38].

5e. Existential Types

In [32], Girard introduced, in addition to A, another binding operator ~ that

produces types called existential types, with the syntax

Recently, Mitchell and Plotkin [30] suggested that an existential type can be thought

of as the signature of an abstract data type (in roughly the sense of algebraic data

types), and that values of the existential type can be thought of as representations

of the abstract data type.

For example, in a type definition of the form

= = _ _ lettype ~ = m with ilm I el, ... , inm n e n in e ,

the type ~ and the expression <el, ... , en> together constitute a data-type repre-

sentation that is a value of the existential type 3 ~. prod(~ I, ... , ~n). Note

that this existential type provides exactly the information to ascertain that the

135

ek's bear the right relationship to m, i.e. that each must have the type ~k ~ + "

To "package" such representations, we introduce the operator rep, with the

syntax

E ::= rep~.~ ~ E (S21a)

For example, the above representation would be the value of

rep~[~.prod(~l,°..,~n) ~ <e I ~ en>

To unpackage representations, we introduce the operator abstype, with the syntax

E ::= ahstype T with I = E inn E (S21h)

These operators are related by the reduction rule

abst~pe ~ with i = (r_9~.~, ~ e 2) i~n e I = ell a ÷ ~I i + e2 (R21)

(Here we can assume the two occurrence of e are the same type variable since the

occurrence in the subscript is a bound variable that can be renamed.)

Using these new constructs, the lettype expression given above can be defined

as an abbreviation for

abstype ~ with i = (r-9~.pr°d(~l,'.',~n) m <el' "'" ' en>)

= in let il= i.l i_nn ... l%t i n i.n in e ,

where i is an identifier not occurring free in e. Notice that this definition

reduces to

(lel~ i I =i.lin ... let i n =i.nln e) I ~ i > '
-- ~ ÷ ÷ <el, ... , e n

and then to

e l l i I ÷ e ' ÷ ~ ÷ el' "'" ~ in n

which coincides with the reduction of the alternative definition of lettype ... with

given in Section 5a.

The new operations satisfy the following inference rules:

I-- e: (~' ~ ÷ ~) (E21a)

n, i: m' I-- el: mO when ~ does not occur free in
(E21b)

I-- e2: ~" ~' ~0 or in any type expression

assigned by
I-- abstype ~ with i = e 2 i~n el: ~0

(Note that the presence of the subscript ~. ~' is necessary to make the first rule

explicit.) From these rules and the definition of lettype ... with ... in terms

of absty~ and rep, one can derive an inference rule that is similar to (El9) except

for the addition of a proviso that ~ must not occur free in ~0 (which Mitchell and

Plotkin believe is necessary to make lettype ... with ... truly abstract.)

136

Of course, existential types would be uninteresting if their only purpose was

to provide an alternative definition of lettype ... with The real point of

the matter is that they permit abstract data type representations to be "first class"

values that can be bound to identifiers and given as arguments to functions. For

instance, the example in Section 5a can now be rewritten as

(lr~complex. prod(complex, complex ÷ complex+ complex)"

abstype complex with prims = r i_~n

let i = prims.l in let addcmprim.2 i_nn ...)

(reP~complex. prod(complex, complex + complex ÷ complex)

prod(real, real)

<<0, i>, %Xprod(real,real). lYprod(real,real) .

<add x.l y.l, ad__~d x.2 y.2>>)

Here the first three lines denote a function that could he defined separately and

applied to a variety of representations of type

~complex. prod(complex, complex + complex ÷ complex) ,

such as representatlonsof complex numbers using different coordinate systems.

The analogy with algebraic data types is that ~e. ~ is a signature and that

values of the type are algebras of the signature. However, the analogy breaks down

in two ways. On the one hand, ~u. m cannot contain equations constraining the

algebra, i.e. one can only mirror anarchic algebras this way. On the other hand,

existential types go beyond algebra in permitting the primitive operations to be

higher-order functions.

ACKNOWLEDGEMENT

This survey has been inspired by conversations with numerous researchers in

the area of type theory. I am particularly indebted to Gordon Plotkin, Nancy

McCracken, and Lockwood Morris.

137

REFERENCES

I. Guttag, JoV., and Horning, J.J., "The Algebraic Specification of Abstract Data
Types", Acta Informatica i0 (i), 1978, pp. 27-52.

2. Goguen, J~A., Thatcher, J.W., and Wagner, E.G., "Initial Algebra Approach to the
Specification, Correctness, and Implementation of Abstract Data Types", Current
Trends in Programming Methodology, 4, Data Structuring, ed. R.T. Yeh, Prentice-
Hall, Englewood Cliffs, 1978.

3. Kapur, D., "Towards a Theory for Abstract Data Types", Tech. Rep. TR-237, Lab-
oratory for Computer Science, M.I.T., May 1980.

4. Coppo, M., and Dezani-Ciancaglini, M., "A New Type Assignment for %-terms",
Archive f. math. Logik u. Grundlagenforschung 19(1979) 139-156.

5. Barendregt, H., Coppo, M., and Dezani-Ciancaglini, M., "A Filter Lambda Model
and the Completeness of Type Assignment", to appear in the Journa! of Symbolic
Lo~£.

6. Martin-Lof, P., "Constructive Mathematics and Computer Programming", Proceedings
of the Sixth (1979) International Congress for Logic, Methodology and Philosophy
of Science, North-Holland, Amsterdam, 1979.

7. Constable, Robert L. and Zlatin, D.R., "The Type Theory of PL/CV3", ACM Trans-
actions on Programming Languages and Systems, 6 (1984), 94-117.

8. Coquand, T., and Huet, G., "A Theory of Constructions", unpublished.

9. Burstall, R., and Lampson, B., "A Kernel Language for Abstract Data Types and
Modules", Semantics of Data Types, eds. G. Kahn, D.B. MacQueen, and G. Plotkin,
Lecture Notes in Computer Science 173, Springer-Verlag, Berlin (1984), pp. 1-50.

10. Reynolds, J.C., "The Essence of Algol", A!~orithmic Languages, eds. J.W. de
Bakker and J.C. van Vliet, North-Holland, 1981, pp. 345-372.

Ii. Oles, F.J.~ "A Category-Theoretic Approach to the Semantics of Programming
Languages", Ph.D. dissertation, Syracuse University, August 1982.

12. Oles, F.J., "Type Algebras, Functor Categories, and Block Structure", Algebraic
Methods in Semantics, eds. M. Nivat and J.C. Reynolds, Cambridge University
Press (1985).

13. Henderson, ~, and Morris, J.H., "A Lazy Evaluator". Prec. 3rd annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, Atlanta,
1976, 95-103.

14. Friedman, D.P., and Wise, D.S., "CONS Should not Evaluate its Arguments".
In Automata, Languages and ' Programing, eds. Michaelson and Milner, Edinburgh
University Press, 1976, 257-284.

15. Landin, P.J., "A Correspondence Between Algol 60 and Church's Lambda-Notation",
Comm. ACM 8, (February-March 1965), pp. 89-101 and 158-165.

16. McCarthy, J., "Recursive Functions of Symbolic Expressions and Their Computation
by ~chine, Part I", Comm. ACM 3 (April 1960), pp. 184-195.

17. MacQueen, D.B., and Sethi, R., "A Semantic Model of Types for Applicative Lan-
guages", ACM Symposium on LISP and Functional Programming, 1982, pp. 243-252.

18. McCracken, N., "An Investigation of a Programming Language with a Polymorphic
Type Structure", Ph.D. dissertation, Syracuse University, June 1979.

It 19. McCracken, N.J., "A Finitary Retract Model for the Pelymorphic Lambda-Calculus ,
submitted to Information and Control.

138

20. Reynolds, J.C., "Types, Abstraction and Parametric Polymorphism", Information
Processing 83, ed. R.E.A. Mason, Elsevier Science Publishers B.V. (North-
Holland) 1983, pp. 513-523.

21. Hindley, R., "The Principal Type-scheme of an Object in Comhinatory Logic",
Trans. Amer. Math. Society 146 (1969) 29-60.

22. Milner, R., "A Theory of Type Polymorphism in Programming", Journal of Computer
and System Sciences 17 (1978), 348-375.

23. Robinson, J.A., "A Machine-oriented Logic Based on the Resolution Principle",
JACM 12, I (1965), 23-41.

24. Strachey, C., "Fundamental Concepts in Programming Languages", Lecture Notes,
International Summer School in Computer Programming, Copenhagen, August 1967.

25. Huet, G., "Resolution d'~quations dans des Langages d'Ordre 1,2,...,~", doc-
toral thesis, University of Paris VII (September 1976).

26. Morris, F.L., "On List Structures and Their Use in the Programming of Unifica-
tion", School of Computer and Information Science, Report 4-78, SyraCuse Univer-
sity, 1978.

27. Reynolds, J.C., "Using Category Theory to Design Implicit Conversions and Gen-
eric Operators", Semantics-Directed Compiler Generation, Proceedings of a Work-
shop, Aarhus, Denmark, January 14-18, 1980, ed. N.D. Jones, Lecture Notes in
Computer Science 94, Springer-Verlag, New York, pp. 211-258.

28. Goguen, J.A., "Order Sorted Algebras: Exceptions and Error Sorts, Coercions
and Overloaded Operators", Semantics and Theory of Computation Report 14,
Computer Science Department, UCLA (December 1978). To appear in Journal of
Computer and Systems Science.

29. Cardelli, L., "A Semantics of Multiple Inheritance", Semantics of Data Types,
eds. G. Kahn, D.B. MacQueen and G. Plotkin, Lecture Notes in Computer Science
173, Springer-Verlag, Berlin (1984), pp. 51-67.

30. Mi~chell, J.C., and Plotkin, G.D., "Abstract Types Have Existential Type",
Proc. 12th Annual ACM Symposium on Principles of programming Languages,
New Orleans, 1985.

31. Reynolds, J.C., "Towards a Theory of Type Structure, Proc. Colloque sur la
Programmation, Lecture Notes in Computer Science 19, Springer-Verlag, New York,
1974, pp. 408-425.

32. Girard, J.-Y., "Interpretation Fonctionelle et Elimination des Couples dans
l'Arithm6tlque d'Ordre Sup~rieur", Th~se de Doctorat d'~tat, Paris, 1972.

33. Fortune, S., Leivant, D., and O'Donnell, M., "The Expressiveness of Simple and
Second-Order Type Structures", Journal of the ACM 30, i (January 1983),
pp. 151-185.

34. Leivant, D., "Reasoning About Functional Programs and Complexity Classes
Associated with Type Disciplines", Twenty-fourth Annual Symposium on Found-
ation of Computer Science (1983) 460-469.

35. Bo'hm, C., and Berarducci, A., "Automatic Synthesis of Typed A-Programs on Term
Algebras", submitted for publication.

36. Reynolds, J.C., "Polymorphism is not Set-Theoretic", Semantics of Data Types,
eds. G. Kahn, D.B. MacQueen, and G. Plotkin, Lecture Notes in Computer Science
173, Springer-Verlag, Berlin (1984), pp. 145-156.

37. Leivant, D., "Polymorphic Type Inference", Proc. 10th Annual ACM Symposium
on Principles of Prosra~ing Languages, Austin, 1983.

38. McCracken, N.J., "The Typechecking of Programs with Implicit Type Structure",
Semantics of Data Types, eds. G. Kahn, D.B. MacQueen, and G. Plotkin, Lecture
Notes in Computer Science 1733, Springer-Verlag, Berlin (1984), pp. 301-315.

