TSPL: Notes on Subtyping

Philip Wadler
November 22, 2016

1 Simply-typed lambda calculus with records

Write I' Fgpc M @ A if term M has type A in the simply-typed lambda calculus
with functions and records.

by M A

(w:A)er
“TTraz:A
abstract Iz:AFN:B apply L L:iA—B TEM:A
'+-(M\:A.N):A— B Y L (LM):B
LHM:A PHL:{{: A} 1<i<l|
record — — — select

We write {¢: A} to stand for {¢; : Ay, ..., £, : A,} where |{] stands for n,
and similarly for {M : A} and {¢ = M}. For example, an instance of the last
rule is:

F"LZ{€1:A1,£21A2,€32A3} 1S’L§3

select

2 Subtyping

Write A <: B if every value of type A is also of type B.



A<:B

rel tran A<:B B<:C
A< A A< C

C<:A B<:D
A—-B<:C—D

fun

depth—— j4<:Bﬁ _ width—— — S—
{¢:A} <:{¢: B} {¢,m:A B} <:{l: A}

The first line says subtyping is reflexive and transitive. The second line says
subtyping of functions is contravariant in the domain and covariant in the range.
The third line says records are covariant in the field types (depth), and a record
with more fields is a subtype of a record with fewer (width).

For example, using depth and width subtyping we have

Al <: By Ay <: Bg
{61 : Al, ls : AQ, £3 : Ag} <: {él : Bl, by : BQ}

Write I' Fqyg M : A if term M has type A in the lambda calculus with
subtyping. The rules are identical to those of simply-typed lambda calculus,
augmented with a rule for subsumption.

I'tgos M : A

" (x:A)eTl
CTTrz:A
I'Nz:AFN:B 'rL:A—-B TFM:A
abstract apply
'k (A:A.N): A— B '-(LM):B
TEM:A THL:{(: A} 1<i<|
record = — ——— select

'-rM:A A<:B
'EM:B

sub

Simply-typed lambda calculus has the nice property that there is exactly
one typing derivation possible for each well-typed term. With subtyping, that
is no longer the case. Here are two different derivations showing term L M has



type D, given that L: A — B, M : C,C <: A, and B <: D.

Chl.4_p fw C<:A B<:D
A= A—B<:C—D

L TF-L:.C—D T-M:C
PPy TF(LM):D
b '-M:C C<: A
r'-L:A—-pB " I'-M:A
apply
) TF(LM):B B<:D
o TF(LM):D

3 Translation

One way to think of subtyping is that if A <: B then there is a coercion function
¢ : A — B. We can think of the type rules as performing a type-directed
translation. Write A <: B ~ ¢ to indicate that ¢: A — B is a coercion from A
to B.

refl tran A<:B~c¢ B<:C~d
A<t A~ (A x) A < C~ (Az:A.d(c(x)))

C<:A~c¢c B<:D~d
A— B<:C— D~ (AN:A-B. Ax:C.d(f(c(x))))

fun

width

—

{07 A, BY <: {l: A} ~ (\z:{l,m: A, B} {{ = 2.0})
For example, using depth and width subtyping we have
Ay <: By~ Ay <: By~ o

{51 : Al, 2% A27 2% Ad} < {fl : By, ly - BQ} ~
()\Z : {61 : Al, fz : AQ, 53 : Ag} {fl = 01(2[1), fz = CQ(Z.@Q)})

The translation of a subtyping relation is a coercion function of the appro-
priate type.

Proposition 1 If A <: B ~ ¢ then ) bgpc c: A — B.

Write I' = M : A ~ M’ to indicate that term M of type A translates to term
M’'. Each rule simply translates the parts of the term, with the exception of
the subsumption rule, which applies the coercion corresponding to the subtype.



I bppay M 2 A~ MY

(x:A) el
I'tz: A~z

id

I'z:AFN:B~ N’
' (Az:A.N): A— B~ Ax:A. N’

abstract

apply I'-L:A—-B~L T FM:A~ M
'F(LM): B~ (L' M)

record

T+ {0=M}:{0:A}

THL:{(:A L 1<i<l|

select

I'-FM:A~ M A<:B~c¢
'EM: B~ c¢(M)

A term has a translation if it is well-typed in the lambda calculus with
subtyping, and its translation is well-typed in the simply-typed lambda calculus.

sub

Proposition 2 (Translation preserves types) If I' Fogan M @ A ~ M’
then T lgug M 1 A and T Fope M A.

Indeed, a term is well-typed with subtyping exactly when it has a translation.

Proposition 3 (Subtyping and translation) T by M : A if and only if
T bopay M 2 A~ M for some M.

If there is more than one derivation of a typing judgement, then corre-
spondingly there will be more than one translation. Corresponding to the two
derivations of term L M of type D given earlier, here are two translations of that
term, given that L: A — B~ L', M :C ~ M', C <: A~ c,and B <: D ~ d.

C<:A~c¢ B<:D~d
'-L:A— B~ L A—-B<:C—>D~wF
I'+L:C—>D~FL THM:C ~ M

TF(LM):D~FL M

I'-M:C~M C<:A~c
I'rL:A— B~ L I'FM:A~cM
'F(LM):B~ L' (¢cM) B<:D~d

TF(LM):D~d(L (cM))



where F' = (A\f:A — B. \x:C.d(f(c(z)))). The two derived terms are equivalent
since

(Af:A — B Az:C.d(f(c(x)))) L' M" —* d (L' (¢ M"))

under call-by-name.

Whenever we use type derivations to guide translation, it is desirable that
the system to be coherent, meaning that if there is more than one possible type
derivation then all of the corresponding derivations are equivalent. For terms
M and N of simply-typed lambda calculus, write M =g N iff M —* P and
N —* P under call-by-name for some term P.

Proposition 4 (Translation is coherent) IfT g L: A~ M andT Fogax
L:A~ N th@TZMZSTLcN-



