UNIVERSITY OF EDINBURGH
COLLEGE OF SCIENCE AND ENGINEERING
SCHOOL OF INFORMATICS

INFR11114 TYPES AND SEMANTICS FOR PROGRAMMING
LANGUAGES

Thursday 15 % December 2016

14:30 to 16:30

INSTRUCTIONS TO CANDIDATES

Answer QUESTION 1 and ONE other question.
Question 1 is COMPULSORY.

All questions carry equal weight.

CALCULATORS MAY NOT BE USED IN THIS EXAMINATION

Year 4 Courses

Convener: 1. Murray
External Examiners: A. Cohn, A. Donaldson, S. Kalvala

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

1. THIS QUESTION IS COMPULSORY

This question uses the library definition of 1ist in Coq, which includes the
functions rev and app (++). You may use any facts about rev and app that you
find with SearchAbout, except in (b) you may not use rev_app_distr, which is
the theorem you are trying to prove

Here is an informal definition of the predicate pal.

pal zs
pal ([x] ++ zs++ [z])

pal_empty pal_unit pal_step

pal [] pal [z]

(a) Formalise the definition above. (8 marks]

(b) Prove the following.

Theorem rev_app distr’ : V(X : Type) (zs ys : list X),
rev (xs ++ys) = (rev ys) ++ (rev xs).

(8 marks]
(c) Prove the following.

Theorem pal rev : V(X : Type) (xs: list X),

pal xs — s = rev xs

[9 marks]

Page 1 of 3

. ANSWER EITHER THIS QUESTION OR QUESTION 3

You will be provided with a definition of a simple imperative language in Coq.
Mark any changes you make to the definition with (x !l *).
Consider a guarded command construct satisfying the following rules:

Evaluation:

beval st b; = false
beval st by, = false

E GuardEnd
DO b; THEN ¢; OR by THEN ¢y OD/St | st

beval st b; = true
c1/st | st’
DO b; THEN c¢; OR by THEN co OD/st’ || st”

DO by THEN ¢; OR by THEN ¢, OD/st |} st”

E GuardLoopl

beval st by = true
co/st) st
DO b; THEN c¢; OR b, THEN c» OD/St' | st”

E_GuardLoop2 m
DO by THEN c; OR by THEN ¢, OD/st |} st

Hoare logic:

{PAb}} e {{P}}
H{P Aba}} o {{P})

{{P}} DO by THEN ¢; OR by THEN ¢y OD {{P A —by A —b2}}

hoare_guarded

Note that guarded commands are non-deterministic in the case that both b, and
by are true.

(a) Extend the given definition to formalise the evaluation rules. [12 marks]

(b) Prove the Hoare rule. You will be provided with proofs of Hoare rules for
the simple imperative language that you may modify. [18 marks]

Page 2 of 3

3. ANSWER EITHER THIS QUESTION OR QUESTION 2
You will be provided with a definition of simply-typed lambda calculus in Coq.

Mark any changes you make to the definition with (x 11 *).
Consider constructs satisfying the following rules:
Values:
del
e alue (tdelay t)
Evaluation:
/
ST ForceDelay ST Force =1 i
tforce (tdelay t) =t tforce t = tforcet
Typing:
'-teT
T Del
T tdelay t € TLift T
T Force 'FteTLift T
- I'-tforceteT
(a) Extend the given definition to formalise the evaluation and typing rules. [12 marks]

(b) Prove progress. You will be provided with a proof of progress for the simply-
typed lambda calculus that you may extend. [18 marks]

Page 3 of 3

