
UNIVERSITY OF EDINBURGH

COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

TYPES AND SEMANTICS FOR PROGRAMMING LANGUAGES

Sunday 1 st April 2012

00:00 to 00:00

INSTRUCTIONS TO CANDIDATES

MOCK EXAM MOCK EXAM

Answer any TWO questions

All questions carry equal weight

MOCK EXAM MOCK EXAM

Year 4 Courses

Convener: ITO-Will-Determine
External Examiners: ITO-Will-Determine

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY



1. This question uses the library definition of list and In in Coq. (The predicate
In is also sometimes called member.)

Here are informal definitions of the predicates In and break.

in eq
In x (x :: xs)

in cons
In y xs

In y (x :: xs)

break eq
break (x :: xs) x xs

break cons
break xs y ys

break (x :: xs) y (x :: ys)

• Formalise the definition of break. (The definition of In is part of the library.)
[10 marks ]

• Prove each of the following:

(a) break [1; 2; 3] 1 [2; 3].

(b) break [1; 2; 3] 2 [1; 3].

(c) break [1; 2; 3] 3 [1; 2]. [5 marks ]

• Prove the following.

Theorem break in : forall (X : Type) (x y : X) (xs ys : list X),

break xs y ys→ In x xs→ x = y ∨ In x ys.

[10 marks ]

Page 1 of 3



2. You will be provided with a definition of a simple imperative language in Coq.

Consider constructs satisfying the following rules.

Evaluation:

E For

aeval st a1 = n
t update st x n = st′

LOOP x TO a2 DO c END/st′ ⇓ st′′

FOR x == a1 TO a2 DO c END/st ⇓ st′′

E LoopEnd
st x > aeval st a2

LOOP x TO a2 DO c END/st ⇓ st

E LoopLoop

st x ≤ aeval st a2

c/st ⇓ st′

update st′ x (st′ x + 1) = st′′

LOOP x TO a2 DO c END/st′′ ⇓ st′′′

LOOP x TO a2 DO c END/st ⇓ st′′′

Hoare logic:

hoare for
{{P}} LOOP X TO a2 DO c END {{Q}}

{{P [X 7→ a1]}} FOR X == a1 TO a2 DO c END {{Q}}

hoare loop
{{P ∧X ≤ a2}} c {{P [X 7→ X + 1]}}

{{P}} LOOP X TO a2 DO c END {{P ∧X > a2}}

• Extend the given definition to formalise the evaluation rules. [12 marks ]

• Prove the Hoare rules. You will be provided with proofs of Hoare rules for
the simple imperative language that you may modify. [13 marks ]

Page 2 of 3



3. You will be provided with a definition of simply-typed lambda calculus in Coq.

Consider constructs satisfying the following rules.

Evaluation:

ST Snoc1
t1 =⇒ t′

1

(snoc t1 t2) =⇒ (snoc t′
1 t2)

ST Snoc2
value v1 t2 =⇒ t′

2

(snoc v1 t2) =⇒ (snoc v1 t′
2)

ST TCase
t1 =⇒ t′

1

(tcase t1 of lin⇒ t2 | snoc xs x⇒ t3)
=⇒ (tcase t′

1 of lin⇒ t2 | snoc xs x⇒ t3)

ST TCaseLin
(tcase lin of lin⇒ t2 | snoc xs x⇒ t3) =⇒ t2

ST TCaseSnoc
value v1 value v2

(tcase (snoc v1 v2) of lin⇒ t2 | snoc xs x⇒ t3)
=⇒ [xs := v1][x := v2]t3

Typing

T Lin
Γ ` lin ∈ Tsil T

T Snoc
Γ ` t1 ∈ Tsil T Γ ` t2 ∈ T

Γ ` (snoc t1 t2) ∈ Tsil T

T TCase

Γ ` t1 ∈ Tsil T
Γ ` t2 ∈ T ′

Γ, xs ∈ Tsil T, x ∈ T ` t3 ∈ T ′

Γ ` (tcase t1 of lin⇒ t2 | snoc xs x⇒ t3) ∈ T ′

• Extend the given definition to formalise the evaluation and typing rules. [12 marks ]

• Prove progress. You will be provided with a proof of progress for simply-
typed lambda calculus that you may extend. [13 marks ]

Page 3 of 3


