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Notes from Yesterday’s Email
Discussion



Some lessons

I This is generally a crunch-time in the semester
I Slow down a little and give people a chance to catch up

I Once you’re confused, it’s hard to know what to ask
I So not necessarily a problem if people are not asking many

questions, but definitely a sign to slow down more

I Working simple examples in class is good
I ... in part because it makes people think of other questions

I Some hard homework problems have been too vague
I Not enough information −→ need to look at the solution to

see what is wanted −→ hard to think independently any more

I Big picture has been getting a little lost in the details



Big Picture



Plan for the rest of the semester

I This week: Basic subtyping

I Next week: Review and midterm

I Nov 13,15: Algorithmics of subtyping

I Nov 20,22: Modeling OO languages in typed lambda-calculus

I Nov 27,29: Featherweight Java

I Dec 4,6: To be decided (Parametric polymorphism? ML
module system? ...)

I Dec 20: Final exam



What’s it all for

I Techniques and notations for formalizing languages and
language constructs

I inductive definitions, operational semantics, typing and
subtyping relations, etc.

I Records, exceptions, etc. as case studies

I Strong intuitions about fundamental safety properties
I Especially: Healthy scepticism and good investigative skills for

how things can be broken!

I Some specific fundamental building blocks of languages
I Variables, scope, and binding
I Functions and their types (higher-order programming)
I References (mutable state, aliasing)
I Subtyping
I Objects and classes

Ultimately, the goal is to give you the ability to put all this
together and formalize your own languages or language features.



Subtyping (again)



Motivation

We want terms like

(λr:{x:Nat}. r.x) {x=0,y=1}

to be well typed.

Similarly, in object-oriented languages, we want to be able to
define hierarchies of classes, with classes lower in the hierarchy
having richer interfaces than their ancestors higher in the hierarchy,
and use instances of richer classes in situations where one of their
ancestors are expected.



Subsumption

We achieve the effect we want by:

1. defining a new subtyping relation between types, written
S <: T

2. adding a new rule of subsumption to the typing relation:

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)



Subtype relation

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

S <: Top (S-Top)



Example

S-RcdWidth

{a:Nat,b:Nat} <: {a:Nat}
S-RcdWidth

{m:Nat} <: {}
S-RcdDepth

{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{}}



Another example

{x:Nat,y:Nat} <: {y:Nat}

(board)



Aside: Structural vs. declared subtyping

The subtype relation we have defined is structural: We decide
whether S is a subtype of T by examining the structure of S and T.

By contrast, the subtype relation in most OO languages (e.g.,
Java) is explicitly declared: S is a subtype of T only if the
programmer has stated that it should be.

There are pragmatic arguments for both.

For the moment, we’ll concentrate on structural subtyping, which
is the more fundamental of the two. (It is sound to declare S to be
a subtype of T only when S is structurally a subtype of T.)

We’ll come back to declared subtyping when we talk about
Featherweight Java.



Properties of Subtyping



Safety

Statements of progress and preservation theorems are unchanged
from λ→.

Proofs become a bit more involved, because the typing relation is
no longer syntax directed.

Given a derivation, we don’t always know what rule was used in
the last step. The rule T-Sub could appear anywhere.

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)



An Inversion Lemma for Subtyping

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1

and U2 <: T2.

Proof: By induction on subtyping derivations.

Case S-Arrow: U = U1→U2 T1 <: U1 U2 <: T2

Immediate.

Case S-Refl: U = T1→T2

By S-Refl (twice), T1 <: T1 and T2 <: T2, as required.

Case S-Trans: U <: W W <: T1→T2

Applying the IH to the second subderivation, we find that W has
the form W1→W2, with T1 <: W1 and W2 <: T2. Now the IH applies
again (to the first subderivation), telling us that U has the form
U1→U2, with W1 <: U1 and U2 <: W2. By S-Trans, T1 <: U1, and,
by S-Trans again, U2 <: T2, as required.
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Applying the IH to the second subderivation, we find that W has
the form W1→W2, with T1 <: W1 and W2 <: T2. Now the IH applies
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An Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ` s2 : T2.

Proof: By induction on typing derivations.

Case T-Abs: T1 = S1 T2 = S2 Γ, x:S1 ` s2 : S2

Immediate.

Case T-Sub: Γ ` λx:S1.s2 : U U <: T1→T2

By the subtyping inversion lemma, U = U1→U2, with T1 <: U1 and
U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ` s2 : T2, and we are done.
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An Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and
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The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.
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Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.



Preservation — subsumption case

Case T-Sub: t : S S <: T

By the induction hypothesis, Γ ` t′ : S. By T-Sub, Γ ` t : T.



Preservation — subsumption case

Case T-Sub: t : S S <: T

By the induction hypothesis, Γ ` t′ : S. By T-Sub, Γ ` t : T.



Preservation — application case

Case T-App:
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

By the inversion lemma for evaluation, there are three rules by
which t −→ t′ can be derived: E-App1, E-App2, and
E-AppAbs. Proceed by cases.

Subcase E-App1: t1 −→ t′1 t′ = t′1 t2

The result follows from the induction hypothesis and T-App.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)
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Case T-App (continued):
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-App2: t1 = v1 t2 −→ t′2 t′ = v1 t′2
Similar.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

t2 −→ t′2
v1 t2 −→ v1 t′2

(E-App2)



Case T-App (continued):
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-AppAbs:
t1 = λx:S11. t12 t2 = v2 t′ = [x 7→ v2]t12

By the earlier inversion lemma for the typing relation...

T11 <: S11

and Γ, x:S11 ` t12 : T12.
By T-Sub, Γ ` t2 : S11.
By the substitution lemma, Γ ` t′ : T12, and we are done.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)



Case T-App (continued):
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Subcase E-AppAbs:
t1 = λx:S11. t12 t2 = v2 t′ = [x 7→ v2]t12
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(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)



Case T-App (continued):
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Case T-App (continued):
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-AppAbs:
t1 = λx:S11. t12 t2 = v2 t′ = [x 7→ v2]t12

By the earlier inversion lemma for the typing relation... T11 <: S11

and Γ, x:S11 ` t12 : T12.
By T-Sub, Γ ` t2 : S11.
By the substitution lemma, Γ ` t′ : T12, and we are done.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)



Subtyping with Other Features



Ascription and Casting

Ordinary ascription:

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

v1 as T −→ v1 (E-Ascribe)

Casting (cf. Java):

Γ ` t1 : S

Γ ` t1 as T : T
(T-Cast)

` v1 : T

v1 as T −→ v1
(E-Cast)



Ascription and Casting

Ordinary ascription:

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

v1 as T −→ v1 (E-Ascribe)

Casting (cf. Java):

Γ ` t1 : S

Γ ` t1 as T : T
(T-Cast)

` v1 : T

v1 as T −→ v1
(E-Cast)



Subtyping and Variants

<li:Ti
i∈1..n> <: <li:Ti

i∈1..n+k> (S-VariantWidth)

for each i Si <: Ti

<li:Si
i∈1..n> <: <li:Ti

i∈1..n>
(S-VariantDepth)

<kj:Sj
j∈1..n> is a permutation of <li:Ti

i∈1..n>

<kj:Sj
j∈1..n> <: <li:Ti

i∈1..n>
(S-VariantPerm)

Γ ` t1 : T1

Γ ` <l1=t1> : <l1:T1>
(T-Variant)



Subtyping and Lists

S1 <: T1

List S1 <: List T1
(S-List)

I.e., List is a covariant type constructor.



Subtyping and References

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1
(S-Ref)

I.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?

I When a reference is read, the context expects a T1, so if S1 <:
T1 then an S1 is ok.

I When a reference is written, the context provides a T1 and if
the actual type of the reference is Ref S1, someone else may
use the T1 as an S1. So we need T1 <: S1.
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Subtyping and Arrays

Similarly...

S1 <: T1 T1 <: S1

Array S1 <: Array T1
(S-Array)

Compare this with the Java rule for array subtyping:

S1 <: T1

Array S1 <: Array T1
(S-ArrayJava)

This is regarded (even by the Java designers) as a mistake in the
design.
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References again

Observation: a value of type Ref T can be used in two different
ways: as a source for values of type T and as a sink for values of
type T.

Idea: Split Ref T into three parts:

I Source T: reference cell with “read cabability”

I Sink T: reference cell with “write cabability”

I Ref T: cell with both capabilities



References again

Observation: a value of type Ref T can be used in two different
ways: as a source for values of type T and as a sink for values of
type T.
Idea: Split Ref T into three parts:

I Source T: reference cell with “read cabability”

I Sink T: reference cell with “write cabability”

I Ref T: cell with both capabilities



Modified Typing Rules

Γ | Σ ` t1 : Source T11

Γ | Σ ` !t1 : T11
(T-Deref)

Γ | Σ ` t1 : Sink T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit
(T-Assign)



Subtyping rules

S1 <: T1

Source S1 <: Source T1
(S-Source)

T1 <: S1

Sink S1 <: Sink T1
(S-Sink)

Ref T1 <: Source T1 (S-RefSource)

Ref T1 <: Sink T1 (S-RefSink)



Algorithmic Subtyping



Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule
can be “read from bottom to top” in a straightforward way.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

If we are given some Γ and some t of the form t1 t2, we can try
to find a type for t by

1. finding (recursively) a type for t1

2. checking that it has the form T11→T12

3. finding (recursively) a type for t2

4. checking that it is the same as T11



Technically, the reason this works is that we can divide the
“positions” of the typing relation into input positions (Γ and t)
and output positions (T).

I For the input positions, all metavariables appearing in the
premises also appear in the conclusion (so we can calculate
inputs to the “subgoals” from the subexpressions of inputs to
the main goal)

I For the output positions, all metavariables appearing in the
conclusions also appear in the premises (so we can calculate
outputs from the main goal from the outputs of the subgoals)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)



Syntax-directed sets of rules

The second important point about the simply typed
lambda-calculus is that the set of typing rules is syntax-directed, in
the sense that, for every “input” Γ and t, there one rule that can
be used to derive typing statements involving t.

E.g., if t is an application, then we must proceed by trying to use
T-App. If we succeed, then we have found a type (indeed, the
unique type) for t. If it fails, then we know that t is not typable.

−→ no backtracking!



Non-syntax-directedness of typing

When we extend the system with subtyping, both aspects of
syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be
used to give a type to terms of a given shape (the old one
plus T-Sub)

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

2. Worse yet, the new rule T-Sub itself is not syntax directed:
the inputs to the left-hand subgoal are exactly the same as
the inputs to the main goal!
(Hence, if we translated the typing rules naively into a
typechecking function, the case corresponding to T-Sub
would cause divergence.)



Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed either.

1. There are lots of ways to derive a given subtyping statement.

2. The transitivity rule

S <: U U <: T

S <: T
(S-Trans)

is badly non-syntax-directed: the premises contain a
metavariable (in an “input position”) that does not appear at
all in the conclusion.
To implement this rule naively, we’d have to guess a value for
U!



What to do?

1. Observation: We don’t need 1000 ways to prove a given
typing or subtyping statement — one is enough.
−→ Think more carefully about the typing and subtyping
systems to see where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new “algorithmic”
(i.e., syntax-directed) typing and subtyping relations

3. Prove that the algorithmic relations are “the same as” the
original ones in an appropriate sense.

We’ll come back to this discussion in (much) more detail after the
midterm.
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