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Subtyping



Motivation

With our usual typing rule for applications

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

the term
(λr:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

But this is silly: all we’re doing is passing the function a better
argument than it needs.
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Polymorphism

A polymorphic function may be applied to many different types of
data.

Varieties of polymorphism:

I Parametric polymorphism (ML-style)

I Subtype polymorphism (OO-style)

I Ad-hoc polymorphism (overloading)

Our topic for the next few lectures is subtype polymorphism, which
is based on the idea of subsumption.



Subsumption

More generally: some types are better than others, in the sense
that a value of one can always safely be used where a value of the
other is expected.

We can formalize this intuition by introducing

1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any value of
type S can also be regarded as having type T

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)



Example

We will define subtyping between record types so that, for example,

{x:Nat, y:Nat} <: {x:Nat}

So, by subsumption,

` {x=0,y=1} : {x:Nat}

and hence
(λr:{x:Nat}. r.x) {x=0,y=1}

is well typed.



The Subtype Relation: Records

“Width subtyping” (forgetting fields on the right):

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

Intuition: {x:Nat} is the type of all records with at least a
numeric x field.

Note that the record type with more fields is a subtype of the
record type with fewer fields.

Reason: the type with more fields places a stronger constraint on
values, so it describes fewer values.



The Subtype Relation: Records

Permutation of fields:

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

By using S-RcdPerm together with S-RcdWidth and
S-Trans allows us to drop arbitrary fields within records.



The Subtype Relation: Records

“Depth subtyping” within fields:

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

The types of individual fields may change.



Example

S-RcdWidth

{a:Nat,b:Nat} <: {a:Nat}
S-RcdWidth

{m:Nat} <: {}
S-RcdDepth

{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{}}



Variations

Real languages often choose not to adopt all of these record
subtyping rules. For example, in Java,

I A subclass may not change the argument or result types of a
method of its superclass (i.e., no depth subtyping)

I Each class has just one superclass (“single inheritance” of
classes)

−→ each class member (field or method) can be
assigned a single index, adding new indices “on the
right” as more members are added in subclasses
(i.e., no permutation for classes)

I A class may implement multiple interfaces (“multiple
inheritance” of interfaces)
I.e., permutation is allowed for interfaces.



The Subtype Relation: Arrow types

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

Note the order of T1 and S1 in the first premise. The subtype
relation is contravariant in the left-hand sides of arrows and
covariant in the right-hand sides.

Intuition: if we have a function f of type S1→S2, then we know
that f accepts elements of type S1; clearly, f will also accept
elements of any subtype T1 of S1. The type of f also tells us that
it returns elements of type S2; we can also view these results
belonging to any supertype T2 of S2. That is, any function f of
type S1→S2 can also be viewed as having type T1→T2.



The Subtype Relation: Top

It is convenient to have a type that is a supertype of every type.
We introduce a new type constant Top, plus a rule that makes Top
a maximum element of the subtype relation.

S <: Top (S-Top)

Cf. Object in Java.



The Subtype Relation: General rules

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)



Subtype relation

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

S <: Top (S-Top)



Properties of Subtyping



Safety

Statements of progress and preservation theorems are unchanged
from λ→.

Proofs become a bit more involved, because the typing relation is
no longer syntax directed.

Given a derivation, we don’t always know what rule was used in
the last step. The rule T-Sub could appear anywhere.

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.

(Which cases are likely to be hard?)



Subsumption case

Case T-Sub: t : S S <: T

By the induction hypothesis, Γ ` t′ : S. By T-Sub, Γ ` t : T.

Not hard!
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Application case

Case T-App:
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

By the inversion lemma for evaluation, there are three rules by
which t −→ t′ can be derived: E-App1, E-App2, and
E-AppAbs. Proceed by cases.

Subcase E-App1: t1 −→ t′1 t′ = t′1 t2

The result follows from the induction hypothesis and T-App.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)
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Case T-App (continued):
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-App2: t1 = v1 t2 −→ t′2 t′ = v1 t′2
Similar.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

t2 −→ t′2
v1 t2 −→ v1 t′2

(E-App2)



Case T-App (continued):
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-AppAbs:
t1 = λx:S11. t12 t2 = v2 t′ = [x 7→ v2]t12

By the inversion lemma for the typing relation...

T11 <: S11 and
Γ, x:S11 ` t12 : T12.
By T-Sub, Γ ` t2 : S11.
By the substitution lemma, Γ ` t′ : T12, and we are done.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)
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Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ` s2 : T2.
Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2,
with T1 <: U1 and U2 <: T2. (Proof: by induction on
subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ` s2 : T2, and we are done.
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Subtyping with Other Features



Ascription and Casting

Ordinary ascription:

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

v1 as T −→ v1 (E-Ascribe)

Casting (cf. Java):

Γ ` t1 : S

Γ ` t1 as T : T
(T-Cast)

` v1 : T

v1 as T −→ v1
(E-Cast)



Ascription and Casting

Ordinary ascription:

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

v1 as T −→ v1 (E-Ascribe)

Casting (cf. Java):
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Subtyping and Variants

<li:Ti
i∈1..n> <: <li:Ti

i∈1..n+k> (S-VariantWidth)

for each i Si <: Ti

<li:Si
i∈1..n> <: <li:Ti

i∈1..n>
(S-VariantDepth)

<kj:Sj
j∈1..n> is a permutation of <li:Ti

i∈1..n>

<kj:Sj
j∈1..n> <: <li:Ti

i∈1..n>
(S-VariantPerm)

Γ ` t1 : T1

Γ ` <l1=t1> : <l1:T1>
(T-Variant)



Subtyping and Lists

S1 <: T1

List S1 <: List T1
(S-List)

I.e., List is a covariant type constructor.



Subtyping and References

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1
(S-Ref)

I.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?

I When a reference is read, the context expects a T1, so if S1 <:
T1 then an S1 is ok.

I When a reference is written, the context provides a T1 and if
the actual type of the reference is Ref S1, someone else may
use the T1 as an S1. So we need T1 <: S1.
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Subtyping and Arrays

Similarly...

S1 <: T1 T1 <: S1

Array S1 <: Array T1
(S-Array)

S1 <: T1

Array S1 <: Array T1
(S-ArrayJava)

This is regarded (even by the Java designers) as a mistake in the
design.
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References again

Observation: a value of type Ref T can be used in two different
ways: as a source for values of type T and as a sink for values of
type T.

Idea: Split Ref T into three parts:

I Source T: reference cell with “read cabability”

I Sink T: reference cell with “write cabability”

I Ref T: cell with both capabilities
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Modified Typing Rules

Γ | Σ ` t1 : Source T11

Γ | Σ ` !t1 : T11
(T-Deref)

Γ | Σ ` t1 : Sink T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit
(T-Assign)



Subtyping rules

S1 <: T1

Source S1 <: Source T1
(S-Source)

T1 <: S1

Sink S1 <: Sink T1
(S-Sink)

Ref T1 <: Source T1 (S-RefSource)

Ref T1 <: Sink T1 (S-RefSink)



Algorithmic Subtyping



Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule
can be “read from bottom to top” in a straightforward way.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

If we are given some Γ and some t of the form t1 t2, we can try
to find a type for t by

1. finding (recursively) a type for t1

2. checking that it has the form T11→T12

3. finding (recursively) a type for t2

4. checking that it is the same as T11



Technically, the reason this works is that We can divide the
“positions” of the typing relation into input positions (Γ and t)
and output positions (T).

I For the input positions, all metavariables appearing in the
premises also appear in the conclusion (so we can calculate
inputs to the “subgoals” from the subexpressions of inputs to
the main goal)

I For the output positions, all metavariables appearing in the
conclusions also appear in the premises (so we can calculate
outputs from the main goal from the outputs of the subgoals)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)



Syntax-directed sets of rules

The second important point about the simply typed
lambda-calculus is that the set of typing rules is syntax-directed, in
the sense that, for every “input” Γ and t, there one rule that can
be used to derive typing statements involving t.
E.g., if t is an application, then we must proceed by trying to use
T-App. If we succeed, then we have found a type (indeed, the
unique type) for t. If it fails, then we know that t is not typable.

−→ no backtracking!



Non-syntax-directedness of typing

When we extend the system with subtyping, both aspects of
syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be
used to give a type to terms of a given shape (the old one
plus T-Sub)

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

2. Worse yet, the new rule T-Sub itself is not syntax directed:
the inputs to the left-hand subgoal are exactly the same as
the inputs to the main goal!
(Hence, if we translated the typing rules naively into a
typechecking function, the case corresponding to T-Sub
would cause divergence.)



Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed either.

1. There are lots of ways to derive a given subtyping statement.

2. The transitivity rule

S <: U U <: T

S <: T
(S-Trans)

is badly non-syntax-directed: the premises contain a
metavariable (in an “input position”) that does not appear at
all in the conclusion.
To implement this rule naively, we’d have to guess a value for
U!



What to do?

1. Observation: We don’t need 1000 ways to prove a given
typing or subtyping statement — one is enough.
−→ Think more carefully about the typing and subtyping
systems to see where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new “algorithmic”
(i.e., syntax-directed) typing and subtyping relations

3. Prove that the algorithmic relations are “the same as” the
original ones in an appropriate sense.
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