CIS 500
Software Foundations
Fall 2006

October 2
Preliminaries
Homework

Results of my email survey:

▶ There was one badly misdesigned (PhD) problem and a couple of others that were less well thought through than they could have been. These generated the great majority of specific complaints.

▶ Besides these, most people felt the homeworks were somewhat—but not outrageously—too long.

▶ People seemed more or less happy with the pace of the course... but no one wanted it faster! :-)

▶ “PhD questions” are an issue for mixed groups
Conclusion:

- Basically hold course
- Make homeworks a little shorter and tighter
- Change grading scheme for “PhD problems”
 - Non-PhD students in “PhD groups” will be graded the same as those in non-PhD groups
- Slow down a little more on harder bits of material during lectures
 - I need your help for this!
Midterm

- Wednesday, October 11th
- Topics:
 - Basic OCaml
 - TAPL Chapters 3–9
 - Inductive definitions and proofs
 - Operational semantics
 - Untyped lambda-calculus
 - Simple types
More About Bound Variables
Substitution

Our definition of evaluation is based on the “substitution” of values for free variables within terms.

\[(\lambda x. t_{12}) v_2 \longrightarrow [x \mapsto v_2] t_{12} \quad (E\text{-\textsc{AppAbs})}\]

But what is substitution, exactly? How do we define it?
Substitution

For example, what does

\((\lambda x. \ x \ (\lambda y. \ x \ y)) \ (\lambda x. \ x \ y \ x)\)

reduce to?

Note that this example is not a “complete program” — the whole term is not closed. We are mostly interested in the reduction behavior of closed terms, but reduction of open terms is also important in some contexts:

- program optimization
- alternative reduction strategies such as “full beta-reduction”
Consider the following definition of substitution:

\[
\begin{align*}
[x \mapsto s]x &= s \\
[x \mapsto s]y &= y & \text{if } x \neq y \\
[x \mapsto s](\lambda y. t_1) &= \lambda y. ([x \mapsto s]t_1) \\
[x \mapsto s](t_1 \ t_2) &= ([x \mapsto s]t_1) ([x \mapsto s]t_2)
\end{align*}
\]

What is wrong with this definition?
Formalizing Substitution

Consider the following definition of substitution:

\[
[x \mapsto s]x = s \\
[x \mapsto s]y = y \quad \text{if } x \neq y \\
[x \mapsto s](\lambda y.t_1) = \lambda y. ([x \mapsto s]t_1) \\
[x \mapsto s](t_1 t_2) = ([x \mapsto s]t_1)([x \mapsto s]t_2)
\]

What is wrong with this definition?

It substitutes for free and \textit{bound} variables!

\[
[x \mapsto y](\lambda x. \ x) = \lambda x. y
\]

This is not what we want!
Substitution, take two

\[
\begin{align*}
[x \mapsto s]x &= s \\
[x \mapsto s]y &= y & \text{if } x \neq y \\
[x \mapsto s](\lambda y. t_1) &= \lambda y. ([x \mapsto s]t_1) & \text{if } x \neq y \\
[x \mapsto s](\lambda x. t_1) &= \lambda x. t_1 \\
[x \mapsto s](t_1 \ t_2) &= ([x \mapsto s]t_1)([x \mapsto s]t_2)
\end{align*}
\]

What is wrong with this definition?
Substitution, take two

\[
\begin{align*}
[x \mapsto s]x &= s \\
[x \mapsto s]y &= y & \text{if } x \neq y \\
[x \mapsto s](\lambda y. t_1) &= \lambda y. ([x \mapsto s]t_1) & \text{if } x \neq y \\
[x \mapsto s](\lambda x. t_1) &= \lambda x. t_1 \\
[x \mapsto s](t_1 \ t_2) &= ([x \mapsto s]t_1)([x \mapsto s]t_2)
\end{align*}
\]

What is wrong with this definition?

It suffers from variable capture!

\[
[x \mapsto y](\lambda y. x) = \lambda x. x
\]

This is also not what we want.
Substitution, take three

\[[x \mapsto s]x = s \]
\[[x \mapsto s]y = y \] if \(x \neq y \)
\[[x \mapsto s](\lambda y. t_1) = \lambda y. ([x \mapsto s]t_1) \] if \(x \neq y, y \not\in FV(s) \)
\[[x \mapsto s](\lambda x. t_1) = \lambda x. t_1 \]
\[[x \mapsto s](t_1 \ t_2) = ([x \mapsto s]t_1)([x \mapsto s]t_2) \]

What is wrong with this definition?
Substitution, take three

\[
\begin{align*}
[x \mapsto s]x &= s \\
[x \mapsto s]y &= y & \text{if } x \neq y \\
[x \mapsto s](\lambda y. t_1) &= \lambda y. ([x \mapsto s]t_1) & \text{if } x \neq y, y \not\in FV(s) \\
[x \mapsto s](\lambda x. t_1) &= \lambda x. t_1 \\
[x \mapsto s](t_1 \ t_2) &= ([x \mapsto s]t_1)([x \mapsto s]t_2)
\end{align*}
\]

What is wrong with this definition?

Now substitution is a \textit{partial function}!

E.g., \([x \mapsto y](\lambda y. x)\) is undefined.

But we want an result for every substitution.
Bound variable names shouldn’t matter

It’s annoying that the “spelling” of bound variable names is causing trouble with our definition of substitution.

Intuition tells us that there shouldn’t be a difference between the functions $\lambda x.x$ and $\lambda y.y$. Both of these functions do exactly the same thing.

Because they differ only in the names of their bound variables, we’d like to think that these are the same function.

We call such terms \textit{alpha-equivalent}.
Alpha-equivalence classes

In fact, we can create equivalence classes of terms that differ only in the names of bound variables.

When working with the lambda calculus, it is convenient to think about these *equivalence classes*, instead of raw terms.

For example, when we write $\lambda x.x$ we mean not just this term, but the class of terms that includes $\lambda y.y$ and $\lambda z.z$.

We can now freely choose a different *representative* from a term’s alpha-equivalence class, whenever we need to, to avoid getting stuck.
Substitution, for alpha-equivalence classes

Now consider substitution as an operation over *alpha-equivalence classes* of terms.

\[
[x \mapsto s]x = s \\
[x \mapsto s]y = y \quad \text{if } x \neq y \\
[x \mapsto s](\lambda y. t_1) = \lambda y. ([x \mapsto s]t_1) \quad \text{if } x \neq y, y \not\in FV(s) \\
[x \mapsto s](\lambda x. t_1) = \lambda x. t_1 \\
[x \mapsto s](t_1 t_2) = ([x \mapsto s]t_1)([x \mapsto s]t_2)
\]

Examples:

- \([x \mapsto y](\lambda y. x)\) must give the same result as \([x \mapsto y](\lambda z. x)\). We know the latter is \(\lambda z. y\), so that is what we will use for the former.
- \([x \mapsto y](\lambda x. z)\) must give the same result as \([x \mapsto y](\lambda w. z)\). We know the latter is \(\lambda w. z\) so that is what we use for the former.
Review

So what does

$$(\lambda x.\ x\ (\lambda y.\ x\ y))\ (\lambda x.\ x\ y\ x)$$

reduce to?
Types
Plan

- For today, we’ll go back to the simple language of arithmetic and boolean expressions and show how to equip it with a (very simple) type system
- The key property of this type system will be soundness: Well-typed programs do not get stuck
- Next time, we’ll develop a simple type system for the lambda-calculus
- We’ll spend a good part of the rest of the semester adding features to this type system
Outline

1. begin with a set of terms, a set of values, and an evaluation relation

2. define a set of *types* classifying values according to their “shapes”

3. define a *typing relation* \(t : T \) that classifies terms according to the shape of the values that result from evaluating them

4. check that the typing relation is *sound* in the sense that,

\[
\begin{align*}
4.1 & \text{ if } t : T \text{ and } t \rightarrow^* v, \text{ then } v : T \\
4.2 & \text{ if } t : T, \text{ then evaluation of } t \text{ will not get stuck}
\end{align*}
\]
Review: Arithmetic Expressions – Syntax

\[t ::= \]
- true
- false
- if \(t \) then \(t \) else \(t \)
- 0
- succ \(t \)
- pred \(t \)
- iszero \(t \)

\[t \text{ terms} \]
- constant true
- constant false
- conditional
- constant zero
- successor
- predecessor
- zero test

\[v ::= \]
- true
- false
- nv

\[v \text{ values} \]
- true value
- false value
- numeric value

\[nv ::= \]
- 0
- succ \(nv \)

\[nv \text{ numeric values} \]
- zero value
- successor value
Evaluation Rules

\[
\begin{align*}
\text{if true then } t_2 \text{ else } t_3 & \rightarrow t_2 \quad (\text{E-IfTrue}) \\
\text{if false then } t_2 \text{ else } t_3 & \rightarrow t_3 \quad (\text{E-IfFalse}) \\
& \\
& t_1 \rightarrow t'_1 \\
\text{if } t_1 \text{ then } t_2 \text{ else } t_3 & \rightarrow \text{if } t'_1 \text{ then } t_2 \text{ else } t_3 \quad (\text{E-If})
\end{align*}
\]
\[
\frac{t_1 \rightarrow t_1'}{\text{succ } t_1 \rightarrow \text{succ } t_1'} \quad \text{(E-Succ)}
\]

\[
\frac{\text{pred } 0 \rightarrow 0}{\text{(E-PredZero)}}
\]

\[
\frac{\text{pred } (\text{succ } n v_1) \rightarrow n v_1}{\text{(E-PredSucc)}}
\]

\[
\frac{t_1 \rightarrow t_1'}{\text{pred } t_1 \rightarrow \text{pred } t_1'} \quad \text{(E-Pred)}
\]

\[
\frac{\text{iszero } 0 \rightarrow \text{true}}{\text{(E-IszeroZero)}}
\]

\[
\frac{\text{iszero } (\text{succ } n v_1) \rightarrow \text{false}}{\text{(E-IszeroSucc)}}
\]

\[
\frac{t_1 \rightarrow t_1'}{\text{iszero } t_1 \rightarrow \text{iszero } t_1'} \quad \text{(E-IsZero)}
\]
Types

In this language, values have two possible “shapes”: they are either booleans or numbers.

\[
T ::= \text{types} \\
 \text{Bool} \quad \text{type of booleans} \\
 \text{Nat} \quad \text{type of numbers}
\]
Typing Rules

true : Bool \qquad (T-TRUE)
false : Bool \qquad (T-FALSE)

\[
\frac{t_1 : \text{Bool} \quad t_2 : T \quad t_3 : T}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T} \quad (T-\text{If})
\]

0 : Nat \qquad (T-ZERO)

\[
\frac{t_1 : \text{Nat}}{\text{succ } t_1 : \text{Nat}} \quad (T-\text{Succ})
\]

\[
\frac{t_1 : \text{Nat}}{\text{pred } t_1 : \text{Nat}} \quad (T-\text{Pred})
\]

\[
\frac{t_1 : \text{Nat}}{\text{iszzero } t_1 : \text{Bool}} \quad (T-\text{IsZero})
\]
Typing Derivations

Every pair \((t, T)\) in the typing relation can be justified by a *derivation tree* built from instances of the inference rules.

Proofs of properties about the typing relation often proceed by induction on typing derivations.
Imprecision of Typing

Like other static program analyses, type systems are generally *imprecise*: they do not predict exactly what kind of value will be returned by every program, but just a conservative (safe) approximation.

\[
\frac{t_1 : \text{Bool} \quad t_2 : T \quad t_3 : T}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T} \quad (T\text{-IF})
\]

Using this rule, we cannot assign a type to

\[
\text{if true then 0 else false}
\]

even though this term will certainly evaluate to a number.
Properties of the Typing Relation
The safety (or soundness) of this type system can be expressed by two properties:

1. *Progress*: A well-typed term is not stuck

 If $t : T$, then either t is a value or else $t \rightarrow t'$ for some t'.

2. *Preservation*: Types are preserved by one-step evaluation

 If $t : T$ and $t \rightarrow t'$, then $t' : T$.
Inversion

Lemma:

1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
3. If if t₁ then t₂ else t₃ : R, then t₁ : Bool, t₂ : R, and t₃ : R.
4. If 0 : R, then R = Nat.
5. If succ t₁ : R, then R = Nat and t₁ : Nat.
6. If pred t₁ : R, then R = Nat and t₁ : Nat.
7. If iszero t₁ : R, then R = Bool and t₁ : Nat.
Inversion

Lemma:

1. If $\text{true} : R$, then $R = \text{Bool}$.
2. If $\text{false} : R$, then $R = \text{Bool}$.
3. If if t_1 then t_2 else $t_3 : R$, then $t_1 : \text{Bool}$, $t_2 : R$, and $t_3 : R$.
4. If $0 : R$, then $R = \text{Nat}$.
5. If $\text{succ} \ t_1 : R$, then $R = \text{Nat}$ and $t_1 : \text{Nat}$.
6. If $\text{pred} \ t_1 : R$, then $R = \text{Nat}$ and $t_1 : \text{Nat}$.
7. If $\text{iszero} \ t_1 : R$, then $R = \text{Bool}$ and $t_1 : \text{Nat}$.

Proof: ...
Inversion

Lemma:

1. If \(\text{true} : R \), then \(R = \text{Bool} \).
2. If \(\text{false} : R \), then \(R = \text{Bool} \).
3. If \(\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R \), then \(t_1 : \text{Bool}, t_2 : R \), and \(t_3 : R \).
4. If \(0 : R \), then \(R = \text{Nat} \).
5. If \(\text{succ } t_1 : R \), then \(R = \text{Nat} \) and \(t_1 : \text{Nat} \).
6. If \(\text{pred } t_1 : R \), then \(R = \text{Nat} \) and \(t_1 : \text{Nat} \).
7. If \(\text{iszero } t_1 : R \), then \(R = \text{Bool} \) and \(t_1 : \text{Nat} \).

Proof: ...

This leads directly to a recursive algorithm for calculating the type of a term...
Typechecking Algorithm

typeof(t) = if t = true then Bool
 else if t = false then Bool
 else if t = if t1 then t2 else t3 then
 let T1 = typeof(t1) in
 let T2 = typeof(t2) in
 let T3 = typeof(t3) in
 if T1 = Bool and T2=T3 then T2
 else "not typable"
 else if t = 0 then Nat
 else if t = succ t1 then
 let T1 = typeof(t1) in
 if T1 = Nat then Nat else "not typable"
 else if t = pred t1 then
 let T1 = typeof(t1) in
 if T1 = Nat then Nat else "not typable"
 else if t = iszero t1 then
 let T1 = typeof(t1) in
 if T1 = Nat then Bool else "not typable"
Lemma:

1. If \(v \) is a value of type \texttt{Bool}, then \(v \) is either \texttt{true} or \texttt{false}.
2. If \(v \) is a value of type \texttt{Nat}, then \(v \) is a numeric value.
Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.
2. If v is a value of type Nat, then v is a numeric value.

Proof: ...
Progress

Theorem: Suppose t is a well-typed term (that is, $t : T$ for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.
Theorem: Suppose t is a well-typed term (that is, $t : T$ for some T). Then either t is a value or else there is some t' with $t \to t'$.

Proof:
Progress

Theorem: Suppose t is a well-typed term (that is, $t : T$ for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.

Proof: By induction on a derivation of $t : T$.

Progress

Theorem: Suppose \(t \) is a well-typed term (that is, \(t : T \) for some \(T \)). Then either \(t \) is a value or else there is some \(t' \) with \(t \rightarrow t' \).

Proof: By induction on a derivation of \(t : T \).

The \(T\text{-True} \), \(T\text{-False} \), and \(T\text{-Zero} \) cases are immediate, since \(t \) in these cases is a value.
Progress

Theorem: Suppose t is a well-typed term (that is, $t : T$ for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.

Proof: By induction on a derivation of $t : T$.

The T-True, T-False, and T-Zero cases are immediate, since t in these cases is a value.

Case T-IF: $t = \text{if } t_1 \text{ then } t_2 \text{ else } t_3$

$t_1 : \text{Bool} \quad t_2 : T \quad t_3 : T$
Progress

Theorem: Suppose \(t \) is a well-typed term (that is, \(t : T \) for some \(T \)). Then either \(t \) is a value or else there is some \(t' \) with \(t \rightarrow t' \).

Proof: By induction on a derivation of \(t : T \).

The \(T\text{-True} \), \(T\text{-False} \), and \(T\text{-Zero} \) cases are immediate, since \(t \) in these cases is a value.

Case \(T\text{-If} \): \[t = \text{if } t_1 \text{ then } t_2 \text{ else } t_3 \]
\[t_1 : \text{Bool} \quad t_2 : T \quad t_3 : T \]

By the induction hypothesis, either \(t_1 \) is a value or else there is some \(t'_1 \) such that \(t_1 \rightarrow t'_1 \). If \(t_1 \) is a value, then the canonical forms lemma tells us that it must be either \text{true} or \text{false}, in which case either \(E\text{-IfTrue} \) or \(E\text{-IfFalse} \) applies to \(t \). On the other hand, if \(t_1 \rightarrow t'_1 \), then, by \(E\text{-If} \), \(t \rightarrow \text{if } t'_1 \text{ then } t_2 \text{ else } t_3 \).
Preservation

Theorem: If $t : T$ and $t \rightarrow t'$, then $t' : T$.
Preservation

Theorem: If $t : T$ and $t \rightarrow t'$, then $t' : T$.

Proof: ...
Recap: Type Systems

- Very successful example of a *lightweight formal method*
- Big topic in PL research
- Enabling technology for all sorts of other things, e.g. language-based security
- The skeleton around which modern programming languages are designed