Review (and more details)
Simple Arithmetic Expressions

The set \mathcal{T} of terms is defined by the following abstract grammar:

\[
t ::= \begin{array}{ll}
\text{true} & \text{constant true} \\
\text{false} & \text{constant false} \\
\text{if } t \text{ then } t \text{ else } t & \text{conditional} \\
0 & \text{constant zero} \\
\text{succ } t & \text{successor} \\
\text{pred } t & \text{predecessor} \\
iszero t & \text{zero test}
\end{array}
\]
More explicitly: The set \mathcal{T} is the \textit{smallest} set \textit{closed} under the following rules.

\[
\begin{align*}
\text{true} & \in \mathcal{T} \\
\text{false} & \in \mathcal{T} \\
0 & \in \mathcal{T} \\
\frac{t_1 \in \mathcal{T}}{\text{succ } t_1 \in \mathcal{T}} \\
\frac{t_1 \in \mathcal{T}}{\text{pred } t_1 \in \mathcal{T}} \\
\frac{t_1 \in \mathcal{T}}{\text{iszero } t_1 \in \mathcal{T}} \\
\frac{t_1 \in \mathcal{T} \quad t_2 \in \mathcal{T} \quad t_3 \in \mathcal{T}}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \in \mathcal{T}}
\end{align*}
\]
Generating Functions

Each of these rules can be thought of as a *generating function* that, given some elements from \mathcal{T}, generates some other element of \mathcal{T}. Saying that \mathcal{T} is closed under these rules means that \mathcal{T} cannot be made any bigger using these generating functions — it already contains everything “justified by its members.”

\[
\begin{align*}
\text{true} & \in \mathcal{T} & \text{false} & \in \mathcal{T} & 0 & \in \mathcal{T} \\
\text{succ } t_1 & \in \mathcal{T} & \text{pred } t_1 & \in \mathcal{T} & \text{iszero } t_1 & \in \mathcal{T} \\
\text{if } t_1 \text{ then } t_2 \text{ else } t_3 & \in \mathcal{T}
\end{align*}
\]
Let’s write these generating functions explicitly.

\[
F_1(U) = \{ \text{true} \} \\
F_2(U) = \{ \text{false} \} \\
F_3(U) = \{ 0 \} \\
F_4(U) = \{ \text{succ } t_1 \mid t_1 \in U \} \\
F_5(U) = \{ \text{pred } t_1 \mid t_1 \in U \} \\
F_6(U) = \{ \text{iszero } t_1 \mid t_1 \in U \} \\
F_7(U) = \{ \text{if } t_1 \text{ then } t_2 \text{ else } t_3 \mid t_1, t_2, t_3 \in U \}
\]

Each one takes a set of terms \(U \) as input and produces a set of “terms justified by \(U \)” as output.
If we now define a generating function for the whole set of inference rules (by combining the generating functions for the individual rules),

\[F(U) = F_1(U) \cup F_2(U) \cup F_3(U) \cup F_4(U) \cup F_5(U) \cup F_6(U) \cup F_7(U) \]

then we can restate the previous definition of the set of terms \(T \) like this:

Definition:

- A set \(U \) is said to be “closed under \(F \)” (or “\(F \)-closed”) if \(F(U) \subseteq U \).
- The set of terms \(T \) is the smallest \(F \)-closed set.
 (I.e., if \(O \) is another set such that \(F(O) \subseteq O \), then \(T \subseteq O \).)
Our alternate definition of the set of terms can also be stated using the generating function F:

\begin{align*}
S_0 &= \emptyset \\
S_{i+1} &= F(S_i) \\
S &= \bigcup_i S_i
\end{align*}

Compare this definition of S with the one we saw last time:

\begin{align*}
S_0 &= \emptyset \\
S_{i+1} &= \{\text{true, false, 0}\} \\
&\quad \cup \{\text{succ } t_1, \text{pred } t_1, \text{iszero } t_1 \mid t_1 \in S_i\} \\
&\quad \cup \{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \mid t_1, t_2, t_3 \in S_i\}
\end{align*}

\begin{align*}
S &= \bigcup_i S_i
\end{align*}

We have “pulled out” F and given it a name.
Note that our two definitions of terms characterize the same set from different directions:

- “from above,” as the intersection of all F-closed sets;
- “from below,” as the limit (union) of a series of sets that start from \emptyset and get “closer and closer to being F-closed.”

Proposition 3.2.6 in the book shows that these two definitions actually define the same set.
Warning: Hard hats on for the next slide!
Structural Induction

The principle of structural induction on terms can also be re-stated using generating functions:

Suppose T is the smallest F-closed set.

If, for each set U,

from the assumption “$P(u)$ holds for every $u \in U$”
we can show “$P(v)$ holds for any $v \in F(U)$,”
then $P(t)$ holds for all $t \in T$.
Structural Induction

The principle of structural induction on terms can also be re-stated using generating functions:

Suppose T is the smallest F-closed set.

If, for each set U,

from the assumption “$P(u)$ holds for every $u \in U$” we can show “$P(v)$ holds for any $v \in F(U)$,”

then $P(t)$ holds for all $t \in T$.

Why?
Structural Induction

Why? Because:

- We assumed that T was the smallest F-closed set, i.e., that $T \subseteq O$ for any other F-closed set O.
- But showing

 \[
 \text{for each set } U, \\
 \text{given } P(u) \text{ for all } u \in U \\
 \text{we can show } P(v) \text{ for all } v \in F(U)
 \]

 amounts to showing that “the set of all terms satisfying P” (call it O) is itself an F-closed set.
- Since $T \subseteq O$, every element of T satisfies P.

Structural Induction

Compare this with the structural induction principle for terms from last lecture:

If, for each term \(s \),
given \(P(r) \) for all immediate subterms \(r \) of \(s \)
we can show \(P(s) \),
then \(P(t) \) holds for all \(t \).
Recall, from the definition of S, it is clear that, if a term t is in S_i, then all of its immediate subterms must be in S_{i-1}, i.e., they must have strictly smaller depths. Therefore:

*If, for each term s,
given $P(r)$ for all immediate subterms r of s
we can show $P(s)$,
then $P(t)$ holds for all t.*

Slightly more explicit proof:

- Assume that for each term s, given $P(r)$ for all immediate subterms of s, we can show $P(s)$.
- Then show, by induction on i, that $P(t)$ holds for all terms t with depth i.
- Therefore, $P(t)$ holds for all t.
Operational Semantics
Abstract Machines

An *abstract machine* consists of:

- a set of *states*
- a *transition relation* on states, written \rightarrow

For the simple languages we are considering at the moment, the term being evaluated is the whole state of the abstract machine.
Operational semantics for Booleans

Syntax of terms and values

\[t ::= \]
\[\text{true} \]
\[\text{false} \]
\[\text{if } t \text{ then } t \text{ else } t \]

\[v ::= \]
\[\text{true} \]
\[\text{false} \]
Evaluation Relation on Booleans

The evaluation relation \(t \longrightarrow t' \) is the smallest relation closed under the following rules:

\[
\begin{align*}
\text{if true then } t_2 \text{ else } t_3 & \longrightarrow t_2 \quad (E-\text{IfTrue}) \\
\text{if false then } t_2 \text{ else } t_3 & \longrightarrow t_3 \quad (E-\text{IfFalse})
\end{align*}
\]

\[
\frac{t_1 \longrightarrow t_1'}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \longrightarrow \text{if } t_1' \text{ then } t_2 \text{ else } t_3} \quad (E-\text{If})
\]
Digression

Suppose we wanted to change our evaluation strategy so that the \texttt{then} and \texttt{else} branches of an \texttt{if} get evaluated (in that order) before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the \texttt{then} and \texttt{else} branches leads to the same value, we want to immediately produce that value ("short-circuiting" the evaluation of the guard). How would we need to change the rules?

Of the rules we just invented, which are computation rules and which are congruence rules?
Digression

Suppose we wanted to change our evaluation strategy so that the `then` and `else` branches of an `if` get evaluated (in that order) before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the `then` and `else` branches leads to the same value, we want to immediately produce that value ("short-circuiting" the evaluation of the guard). How would we need to change the rules?
Suppose we wanted to change our evaluation strategy so that the then and else branches of an if get evaluated (in that order) before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else branches leads to the same value, we want to immediately produce that value (“short-circuiting” the evaluation of the guard). How would we need to change the rules?

Of the rules we just invented, which are computation rules and which are congruence rules?
Evaluation, more explicitly

→ is the smallest two-place relation closed under the following rules:

\[
((\text{if } \text{true} \text{ then } t_2 \text{ else } t_3), t_2) \in \rightarrow
\]

\[
((\text{if } \text{false} \text{ then } t_2 \text{ else } t_3), t_3) \in \rightarrow
\]

\[
(t_1, t'_1) \in \rightarrow
\]

\[
((\text{if } t_1 \text{ then } t_2 \text{ else } t_3), (\text{if } t'_1 \text{ then } t_2 \text{ else } t_3)) \in \rightarrow
\]
Even more explicitly...

What is the generating function corresponding to these rules?

(exercise)
Reasoning about Evaluation
Derivations

We can record the “justification” for a particular pair of terms that are in the evaluation relation in the form of a tree.

(on the board)

Terminology:

- These trees are called *derivation trees* (or just *derivations*).
- The final statement in a derivation is its *conclusion*.
- We say that the derivation is a *witness* for its conclusion (or a *proof* of its conclusion) — it records all the reasoning steps that justify the conclusion.
Observation

Lemma: Suppose we are given a derivation tree D witnessing the pair (t, t') in the evaluation relation. Then either

1. the final rule used in D is E-IfTrue and we have $t = \text{if true then } t_2 \text{ else } t_3$ and $t' = t_2$, for some t_2 and t_3, or

2. the final rule used in D is E-IfFalse and we have $t = \text{if false then } t_2 \text{ else } t_3$ and $t' = t_3$, for some t_2 and t_3, or

3. the final rule used in D is E-If and we have $t = \text{if } t_1 \text{ then } t_2 \text{ else } t_3$ and $t' = \text{if } t'_1 \text{ then } t_2 \text{ else } t_3$, for some t_1, t'_1, t_2, and t_3; moreover, the immediate subderivation of D witnesses $(t_1, t'_1) \in \rightarrow$.
Induction on Derivations

We can now write proofs about evaluation “by induction on derivation trees.”

Given an arbitrary derivation \mathcal{D} with conclusion $t \rightarrow t'$, we assume the desired result for its immediate sub-derivation (if any) and proceed by a case analysis (using the previous lemma) of the final evaluation rule used in constructing the derivation tree.

E.g....
Theorem: If $t \rightarrow t'$, i.e., if $(t, t') \in \rightarrow$, then $\text{size}(t) > \text{size}(t')$.

Proof: By induction on a derivation D of $t \rightarrow t'$.

1. Suppose the final rule used in D is E-IfTrue, with $t = \text{if true then } t_2 \text{ else } t_3$ and $t' = t_2$. Then the result is immediate from the definition of size.

2. Suppose the final rule used in D is E-IfFalse, with $t = \text{if false then } t_2 \text{ else } t_3$ and $t' = t_3$. Then the result is again immediate from the definition of size.

3. Suppose the final rule used in D is E-If, with $t = \text{if } t_1 \text{ then } t_2 \text{ else } t_3$ and $t' = \text{if } t'_1 \text{ then } t_2 \text{ else } t_3$, where $(t_1, t'_1) \in \rightarrow$ is witnessed by a derivation D_1. By the induction hypothesis, $\text{size}(t_1) > \text{size}(t'_1)$. But then, by the definition of size, we have $\text{size}(t) > \text{size}(t')$.
Normal forms

A *normal form* is a term that cannot be evaluated any further — i.e., a term \(t \) is a normal form (or “is in normal form”) if there is no \(t' \) such that \(t \rightarrow t' \).

A normal form is a state where the abstract machine is halted — i.e., it can be regarded as a “result” of evaluation.
Normal forms

A *normal form* is a term that cannot be evaluated any further — i.e., a term t is a normal form (or “is in normal form”) if there is no t' such that $t \rightarrow t'$.

A normal form is a state where the abstract machine is halted — i.e., it can be regarded as a “result” of evaluation.

Recall that we intended the set of values (the boolean constants *true* and *false*) to be exactly the possible “results of evaluation.” Did we get this definition right?
Values = normal forms

Theorem: A term t is a value iff it is in normal form.

Proof:
The \implies direction is immediate from the definition of the evaluation relation.
Theorem: A term t is a value iff it is in normal form.
Proof:
The \implies direction is immediate from the definition of the evaluation relation.
For the \impliedby direction,
Values = normal forms

Theorem: A term \(t \) is a value iff it is in normal form.

Proof:
The \(\rightarrow \) direction is immediate from the definition of the evaluation relation.

For the \(\leftarrow \) direction, it is convenient to prove the contrapositive:
If \(t \) is *not* a value, then it is *not* a normal form.
Values = normal forms

Theorem: A term t is a value iff it is in normal form.

Proof:
The \implies direction is immediate from the definition of the evaluation relation.
For the \impliedby direction, it is convenient to prove the contrapositive: If t is *not* a value, then it is *not* a normal form. The argument goes by induction on t.
Note, first, that t must have the form $\text{if } t_1 \text{ then } t_2 \text{ else } t_3$ (otherwise it would be a value). If t_1 is true or false, then rule E-IfTrue or E-IfFalse applies to t, and we are done.
Otherwise, t_1 is not a value and so, by the induction hypothesis, there is some t'_1 such that $t_1 \rightarrow t'_1$. But then rule E-IF yields

$$\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \rightarrow \text{if } t'_1 \text{ then } t_2 \text{ else } t_3$$

i.e., t is not in normal form.
New syntactic forms

\[
\begin{align*}
t &::= \ldots \\
& 0 \\
& \text{succ } t \\
& \text{pred } t \\
& \text{iszero } t
\end{align*}
\]

\[
\begin{align*}
v &::= \ldots \\
& \text{nv}
\end{align*}
\]

\[
\begin{align*}
\text{nv} &::= \\
& 0 \\
& \text{succ } \text{nv}
\end{align*}
\]
New evaluation rules

\[
\begin{align*}
 t_1 \rightarrow t'_1 \\
 \text{succ } t_1 \rightarrow \text{succ } t'_1 \\
 \text{pred } 0 \rightarrow 0 \\
 \text{pred } (\text{succ } n v_1) \rightarrow n v_1 \\
 t_1 \rightarrow t'_1 \\
 \text{pred } t_1 \rightarrow \text{pred } t'_1 \\
 \text{iszero } 0 \rightarrow \text{true} \\
 \text{iszero } (\text{succ } n v_1) \rightarrow \text{false} \\
 t_1 \rightarrow t'_1 \\
 \text{iszero } t_1 \rightarrow \text{iszero } t'_1
\end{align*}
\]
Values are normal forms

Our observation a few slides ago that all values are in normal form still holds for the extended language.

Is the converse true? I.e., is every normal form a value?
Values are normal forms, but we have stuck terms

Our observation a few slides ago that all values are in normal form still holds for the extended language.

Is the converse true? I.e., is every normal form a value? No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value. What are some examples?

Stuck terms model run-time errors.
Multi-step evaluation.

The *multi-step evaluation* relation, \rightarrow^*, is the reflexive, transitive closure of single-step evaluation.

I.e., it is the smallest relation closed under the following rules:

\[
\begin{align*}
 t \rightarrow t' & \\
 & \quad \Rightarrow \\
 t \rightarrow^* t' \\
 t \rightarrow^* t & \\
 t \rightarrow^* t' & \\
 t' \rightarrow^* t'' & \\
 & \quad \Rightarrow \\
 t \rightarrow^* t''
\end{align*}
\]
Termination of evaluation

Theorem: For every t there is some normal form t' such that $t \rightarrow^* t'$.

Proof:
Termination of evaluation

Theorem: For every t there is some normal form t' such that $t \rightarrow^* t'$.

Proof:

- First, recall that single-step evaluation strictly reduces the size of the term:

 $\text{if } t \rightarrow t', \text{ then } \text{size}(t) > \text{size}(t')$

- Now, assume (for a contradiction) that $t_0, t_1, t_2, t_3, t_4, \ldots$ is an infinite-length sequence such that $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4 \rightarrow \ldots$.

- Then $\text{size}(t_0) > \text{size}(t_1) > \text{size}(t_2) > \text{size}(t_3) > \ldots$

- But such a sequence cannot exist — contradiction!
Termination Proofs

Most termination proofs have the same basic form:

Theorem: The relation $R \subseteq X \times X$ is terminating — i.e., there are no infinite sequences $x_0, x_1, x_2,$ etc. such that $(x_i, x_{i+1}) \in R$ for each i.

Proof:

1. Choose
 - a well-founded set (W, \lt) — i.e., a set W with a partial order \lt such that there are no infinite descending chains $w_0 \gt w_1 \gt w_2 \gt \ldots$ in W
 - a function f from X to W

2. Show $f(x) \gt f(y)$ for all $(x, y) \in R$

3. Conclude that there are no infinite sequences $x_0, x_1, x_2,$ etc. such that $(x_i, x_{i+1}) \in R$ for each i, since, if there were, we could construct an infinite descending chain in W.