UNIVERSITY OF EDINBURGH
COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

TYPES AND PROGRAMMING LANGUAGES

Specimen Questions
February 2005

Fourth Year Courses

INSTRUCTIONS TO CANDIDATES

This paper contains two specimen questions.
The real exam paper will have three questions.
In the exam, you will be asked to choose to answer
two questions out of the three.

The time allowed will be 1hr45 minutes.

Solution hints:

1. See Chapter 15 of Types and Programming Languages and Cardelli’s

Type Systems survey paper.
2. Study the language FOFL studied in lectures and the practical

assignments; Chapters 11 and 13 of Types and Programming Languages are
also relevant.

1. Consider the type Ref T of references to values of type T. The typing rules
for the relevant term constructors are:

r-¢+:T I'¢t:RefT T'F t:RefT r-=¢:.:T

(a)

I' - reft: Ref T r'1¢t:.T ' - t:=t' : Unit

Some functional languages (e.g., Haskell) do not include a type of ref-
erences, while others (e.g., OCaml) do. Briefly mention what are the
advantages and disadvantages of adding reference types to a functional
language.

A type of (imperative) arrays can be given in terms of reference types,
a natural numbers type Nat and product types, as

Array T" = Nat x (Nat — Ref 7))

In terms of this definition, give typings for terms for the following array
operations:

declaring an array;

indexing into an array;

updating an element of an array;

returning the bound of an array.

Give (correctly-typed) derived terms for each of the above operations
using the underlying term constructors for the type definition. You may
assume terms for numeric comparisons and a term errory for an array
indexing error.

Consider the extension of the language with subtyping. Explain why
references must be considered invariant with respect to the subtyping
relation.

Java considers arrays to be covariant with respect to the subtyping re-
lation. In terms of the above type definition for Array 7', and assuming
the presence of Java’s instanceof operator, give modified definitions
of the array operations above which preserve safety.

Explain (by giving subtyping rules and informal justification) how the
array type Array 7' can be split into two subtypes, ReadArray 7' and
WriteArray 7' which are respectively covariant and contravariant in
terms of the subtyping relation. Show how instances of the transitivity
of subtyping involving array types can be eliminated.

[5 marks]

[5 marks |

[4 marks |

[4 marks |

[7 marks]

2. (a) The syntactic notion of type safety in terms of preservation and progress
theorems is applied to languages with a small-step semantics.

i

il.

1il.

State the usual theorems.

In languages with big-step semantics, the evaluation relation has the
form ¢ || v. What is the safety theorem for this form of language
semantics?

Compare these two alternatives, giving some advantages and dis-
advantages of the small-step approach.

(b) Recall the FOFL language whose programs consist of mutually recursive
first-order functions. A useful extension of FOFL is to add global value
declarations to programs. The syntax is as follows:

t == true | false | 0 | succt | predt | iszerot
| if t thentelset | = | f(t1,...,t,)

T := Nat | Bool
d == decax=t:T | def f(x1:T1,...,2,:T,):T =t
P = progd* gorp

(the phrase dec « =t : T is the only adjustment). The idea is that
before the start of execution (e.g. calling a main function), the global
declarations are executed to initialise the global values.

i

11.

1il.

1v.

An operational semantics for FOFL with global declarations can
be given by using a big-step evaluation relation extended with an
environment p. The environment is a mapping from variables to
values. Give the rules for the judgement ¢ |}, v, assuming that the
values for global variables are defined in the environment.

Give operational rules for defining the initial environment from a
program, the judgement P | p. (Hint: to do this you may restrict
the language so that the initial values of global variables may be
defined in sequence and are not referenced before initialisation).
Now give the definition of a suitable corresponding type system,
defining judgements for checking terms and for checking programs.
(Hint: you will need to introduce a static counterpart of the envi-
ronment and explain how it is defined before type-checking function
bodies).

Give a a suitable safety theorem for this semantics.

[2 marks]

[2 marks]

[2 marks |

(8 marks |

(3 marks]

[5 marks]
(3 marks]

