Learning from Incomplete Data

- Semi-supervised learning
- Latent variable learning
- Unsupervised learning
How to estimate a PCFG?

We learned how to estimate a PCFG from treebank

Reminder:
Unsupervised learning: PCFGs

How to estimate a PCFG from strings?
General case: Viterbi (or "hard") EM

Model:

Observed Data:

Step 0:

Step 1:

Step 2:

Repeat steps 1–2
Maximum likelihood estimation

General principle: write down the likelihood of whatever you observe, and then maximise with respect to parameters

Model: $p(x, y | \theta)$

Observed: x_1, \ldots, x_n

Likelihood:

$L(x_1, \ldots, x_n | \theta) =$
The EM Algorithm

- A softer version of hard EM
- Instead of identifying a single tree per sentence, identify a distribution over trees (E-step)
- Then re-estimate the parameters, with each tree for each sentence “voting” according to its probability (M-step)
- Semiring parsing: instead of CKY use the inside algorithm
EM: Main Disadvantage

Sensitivity to initialisation (finds local maximum)

Global log-likelihood optimisation in general is “hard”
Latent-variable learning

“Structure” is present

Some information is missing from model

Model: $p(x, y, h \mid \theta)$

Observed: $(x_1, y_1), \ldots, (x_n, y_n)$

Log-likelihood:

$L(x_1, \ldots, x_n, y_1, \ldots, y_n \mid \theta) = $
“Context-freeness” can lead to over-generalisation:

Seen in data:

```
S
   NP
    D
    the
   VP
    N
    dog
    V
    saw
    NP
        P
        him
```

Unseen in data (ungrammatical):

```
S
   NP
    N
    him
   VP
    V
    saw
    NP
        D
        the
        N
        dog
```
The latent states for each node are never observed.
How to learn with latent variables?

- Expectation-Maximisation (EM)
- Spectral learning
- Neural networks
- Other methods
Semi-supervised Learning

Main idea: use a relatively small amount of annotated data, and exploit also large amounts of unannotated data

The term itself is used in various ways with various methodologies
Example: Word Clusters and Embeddings

- Learn clusters of words or embed them in Euclidean space using large amounts of text

- Use these clusters/embeddings as features in a discriminative model
Combine the log-likelihood for labelled data with the log-likelihood for unlabelled data

\[L(x_1, y_1, \ldots, x_n, y_n, x'_1, \ldots, x'_m | \theta) = \]
Semi-supervised Learning: Example 3

Self-training
Semi-supervised Learning: Example 3

Self-training

Step 1:

Step 2:

Step 3:

Potentially, repeat step 2
Summary

- Learning from incomplete data alleviates the need to annotate data
- Three ways to use incomplete data: unsupervised learning, semi-supervised learning and learning with latent-variables