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Background 
}  Statistical Language modeling: 

}  learn the joint probability function of sequences of words 
in a language 

}  Given a word sequence 𝑤↓1↑𝑇 , the probability is  
𝑃 (𝑤↓1↑𝑇 )=∏𝑡=1↑𝑇▒𝑃 ( 𝑤↓𝑡 | 𝑤↓1↑𝑡−1 )  

}  Curse of Dimensionality 
}  a word sequence in test data is likely to be different from 

training data 



Background 
}  Traditional Solution 

}  N-grams with smooth or back-off 
}  Only 1 or 2 contexts words taken into account (N in N-

gram is hardly over 3) 
}  Don’t consider Similarity between words: 
If we knew: 

 dog and cat played similar roles 
 Similarity of (the,a), (bedroom,room), (is,was) 

Generalize: The cat is walking in the bedroom 
to  

A dog was running in a room 



Key Idea 

}  Associated each word to a distributed word feature 
vector 

 
}  Using feature vector of words in the sequence to 

express joint probability function 

}  Learn simultaneously  the word feature vector and 
parameters of probability function word feature 
vector 



Neural Probabilistic Language Model 

}  Training Set:  

}  Sequence 𝑤↓1 ,…, 𝑤↓𝑇  of words 𝑤↓𝑡 ∈𝑉, V is the 
vocabulary 

}  Model to be learnt: 
 
𝑓(𝑤↓𝑡 ,…, 𝑤↓𝑡−𝑛+1 )= 𝑃 ( 𝑤↓𝑡 | 𝑤↓1↑𝑡−1 ) 



Decompose 
}  2 parts: 

}  A map C  
 Mappinng from each i in V to a real vector(distributed 
 feature vector) C(i)∈ ℝ↑𝑚  
 A |V|×m matrix of free parameters in practice 
 Shared across all the words in the context 

}  Function g 
𝑓(𝑖,𝑤↓𝑡−1 ,…, 𝑤↓𝑡−𝑛+1 )=𝑔(𝑖,𝐶↓𝑡−𝑛+1 ,…,𝐶↓𝑡−1 ) 

 Feed-forward or recurrent neural network   
  



Structure of Model 



Neural Network 
}  1 hidden layer  

}  h hidden Unit 
}  Use tanh as activation function 

}  Output Softmax Layer 
𝑃 𝑤↓𝑡  𝑤↓1↑𝑡−1  = 𝑒↑𝑦↓𝑤𝑖  /∑𝑖↑▒𝑒↑𝑦↓𝑖     
}  ith input of output layer 𝑦↓𝑖 : 
y=b+Wx+Utanh(d+Hx) 
}  b: bias in output layer (|V| elements); 
}  W connect feature vectors(a |V|×(n−1)×m) matrix)) 

}  Could be 0 (non-connected) 
}  d: bias in hidden layer(h elements) 
}  H is hidden layer weights (h×(n−1)  matrix) 



Parameters 
}   θ=(b,d,W,U,H,C)  
}  |V|(1+nm+h)+h(1+(n−1)m) parameters. 
}  Maximizes :training corpus penalized log-likelihood 
L= 1/𝑇 ∑𝑡↑▒log𝑓( 𝑤↓𝑡 ,…, 𝑤↓𝑡−𝑛+1 :θ) +𝑅(θ) 
}  Stochastic gradient ascent  

For t-th word of the training corpus 
θ←θ+ε𝜕log( 𝑃 ( 𝑤↓𝑡 | 𝑤↓1↑𝑡−1 ))/𝜕θ  
ε is learning rate 



Implementation: Parallel  
}  A lot of Computation 
}  Data-Parallel Processing 

}  Shared-memory processor, each works on a different 
subset of data 

}  Asynchronous 
}  Expensive 

}  Parameter-Parallel Processing 
}  Each CPU is responsible for the computation of the 

unnormalized probability for a subset of the outputs and 
performs the updates 

}  low communication overhead 



Experiments 
}  2 Corpora: 
}  Brown corpus: 

}  800,000 words stream for training  
}  200,000 words stream for validation 
}  181,041 words stream for testing 
}  |V| = 16383 

}  AP News 
}  14 million words stream for training  
}  1 million words stream for validation 
}  1 million words stream for testing 
}  |V| = 17964 



Experiments 
}  Comparison  
}  Smoothed trigram model  

}  (Jelinek and Mercer, 1980) 
}  Back-off n-gram models with the Modified Kneser-

Ney algorithm  
}  (Kneser and Ney, 1995, Chen and Goodman., 1999) 

}  Class-based n-gram models  
}  (Brown et al., 1992, Ney and Kneser, 1993, Niesler et al., 

1998) 



Results: 



Results: 
}  Neural network obtains significantly better results 

than the best n-grams model 
}  Neural network was able to take advantage of more 

context 
}  Hidden units are useful 
}  Mixing is good 

}  neural network and the trigram make errors in different 
places 

}  Direct connections from input to output 



Future Work 
}  Decomposing the network in sub-networks 
}  Propagating gradients only from a subset of the 

output words 


