A Neural Probabilistic Language Model

Pengfei Tan

Background

Statistical Language modeling:

- learn the joint probability function of sequences of words in a language
- Given a word sequence $w \downarrow 1 \uparrow T$, the probability is

 $P(w\downarrow 1\uparrow T) = \prod t = 1\uparrow T \blacksquare P(w\downarrow t \mid w\downarrow 1\uparrow t - 1)$

- Curse of Dimensionality
 - a word sequence in test data is likely to be different from training data

Background

Traditional Solution

- N-grams with smooth or back-off
- Only 1 or 2 contexts words taken into account (N in Ngram is hardly over 3)
- Don't consider Similarity between words:

If we knew:

dog and cat played similar roles

Similarity of (the,a), (bedroom,room), (is,was)

Generalize: The cat is walking in the bedroom

to

A dog was running in a room

Key Idea

- Associated each word to a distributed word feature vector
- Using feature vector of words in the sequence to express joint probability function
- Learn simultaneously the word feature vector and parameters of probability function word feature vector

Neural Probabilistic Language Model

- Training Set:
 - Sequence w↓1,...,w↓T of words w↓t ∈ V, V is the vocabulary
- Model to be learnt:

 $f(w \downarrow t, ..., w \downarrow t - n + 1) = P(w \downarrow t | w \downarrow 1 \uparrow t - 1)$

Decompose

- > 2 parts:
 - A map C

Mappinng from each i in V to a real vector(distributed feature vector) $C(i) \in \mathbb{R} \uparrow m$

A |V|×m matrix of free parameters in practice Shared across all the words in the context

Function g

 $f(i,w\downarrow t-1,...,w\downarrow t-n+1) = g(i,C\downarrow t-n+1,...,C\downarrow t-1)$

Feed-forward or recurrent neural network

Structure of Model *i*-th output = $P(w_t = i \mid context)$ softmax most computation here tanh $C(w_{t-2})$ $C(w_{t-n+1})$ $C(w_{t-1})$ Matrix C Table look-up shared parameters in Cacross words index for w_{t-n+1} index for w_{t-2} index for w_{t-1}

Neural Network

- 1 hidden layer
 - h hidden Unit
 - Use tanh as activation function
- Output Softmax Layer
 - $P w \downarrow t w \downarrow 1 \uparrow t 1 = e \uparrow y \downarrow w i / \sum_{i} e \uparrow y \downarrow i$
 - ith input of output layer $y \downarrow i$:
 - y=b+Wx+Utanh(d+Hx)
 - b: bias in output layer (|V| elements);
 - ▶ W connect feature vectors(a /V/×(n−1)×m) matrix))
 - Could be 0 (non-connected)
 - d: bias in hidden layer(h elements)
 - ▶ H is hidden layer weights (h×(n−1) matrix)

Parameters

- $\theta = (b,d,W,U,H,C)$
- /V/(1+nm+h)+h(1+(n-1)m) parameters.
- Maximizes :training corpus penalized log-likelihood
- $L=1/T \sum t \widehat{f} = \log f(w \downarrow t, ..., w \downarrow t n + 1 : \theta) + R(\theta)$
- Stochastic gradient ascent
 - For t-th word of the training corpus
- $\theta \leftarrow \theta + \varepsilon \partial \log(P(w \downarrow t | w \downarrow 1 \uparrow t 1)) / \partial \theta$
 - $\boldsymbol{\epsilon}$ is learning rate

Implementation: Parallel

- A lot of Computation
- Data-Parallel Processing
 - Shared-memory processor, each works on a different subset of data
 - Asynchronous
 - Expensive
- Parameter-Parallel Processing
 - Each CPU is responsible for the computation of the unnormalized probability for a subset of the outputs and performs the updates
 - Iow communication overhead

Experiments

- 2 Corpora:
- Brown corpus:
 - 800,000 words stream for training
 - > 200,000 words stream for validation
 - 181,041 words stream for testing
 - ▶ |V| = 16383
- AP News
 - 14 million words stream for training
 - 1 million words stream for validation
 - 1 million words stream for testing
 - ▶ |V| = 17964

Experiments

- Comparison
- Smoothed trigram model
 - (Jelinek and Mercer, 1980)
- Back-off n-gram models with the Modified Kneser-Ney algorithm
 - (Kneser and Ney, 1995, Chen and Goodman., 1999)
- Class-based n-gram models
 - (Brown et al., 1992, Ney and Kneser, 1993, Niesler et al., 1998)

Results:

	n	с	h	m	direct	mix	train.	valid.	test.
MLP1	5		50	60	yes	no	182	284	268
MLP2	5		50	60	yes	yes		275	257
MLP3	5		0	60	yes	no	201	327	310
MLP4	5		0	60	yes	yes		286	272
MLP5	5		50	30	yes	no	209	296	279
MLP6	5		50	30	yes	yes		273	259
MLP7	3		50	30	yes	no	210	309	293
MLP8	3		50	30	yes	yes		284	270
MLP9	5		100	30	no	no	175	280	276
MLP10	5		100	30	no	yes		265	252
Del. Int.	3						31	352	336
Kneser-Ney back-off	3							334	323
Kneser-Ney back-off	4							332	321
Kneser-Ney back-off	5							332	321
class-based back-off	3	150						348	334
class-based back-off	3	200						354	340
class-based back-off	3	500						326	312
class-based back-off	3	1000						335	319
class-based back-off	3	2000						343	326
class-based back-off	4	500						327	312
class-based back-off	5	500						327	312

Results:

- Neural network obtains significantly better results than the best n-grams model
- Neural network was able to take advantage of more context
- Hidden units are useful
- Mixing is good
 - neural network and the trigram make errors in different places
- Direct connections from input to output

Future Work

- Decomposing the network in sub-networks
- Propagating gradients only from a subset of the output words