
A Neural Probabilistic Language Model

Pengfei Tan

Background
}  Statistical Language modeling:

}  learn the joint probability function of sequences of words
in a language

}  Given a word sequence 𝑤↓1↑𝑇 , the probability is
𝑃 (𝑤↓1↑𝑇 )=∏𝑡=1↑𝑇▒𝑃 (𝑤↓𝑡 | 𝑤↓1↑𝑡−1 ) 

}  Curse of Dimensionality
}  a word sequence in test data is likely to be different from

training data

Background
}  Traditional Solution

}  N-grams with smooth or back-off
}  Only 1 or 2 contexts words taken into account (N in N-

gram is hardly over 3)
}  Don’t consider Similarity between words:
If we knew:

 dog and cat played similar roles
 Similarity of (the,a), (bedroom,room), (is,was)

Generalize: The cat is walking in the bedroom
to

A dog was running in a room

Key Idea

}  Associated each word to a distributed word feature
vector

}  Using feature vector of words in the sequence to

express joint probability function

}  Learn simultaneously the word feature vector and
parameters of probability function word feature
vector

Neural Probabilistic Language Model

}  Training Set:

}  Sequence 𝑤↓1 ,…, 𝑤↓𝑇  of words 𝑤↓𝑡 ∈𝑉, V is the
vocabulary

}  Model to be learnt:

𝑓(𝑤↓𝑡 ,…, 𝑤↓𝑡−𝑛+1 )= 𝑃 (𝑤↓𝑡 | 𝑤↓1↑𝑡−1 )

Decompose
}  2 parts:

}  A map C
 Mappinng from each i in V to a real vector(distributed
 feature vector) C(i)∈ ℝ↑𝑚 
 A |V|×m matrix of free parameters in practice
 Shared across all the words in the context

}  Function g
𝑓(𝑖,𝑤↓𝑡−1 ,…, 𝑤↓𝑡−𝑛+1 )=𝑔(𝑖,𝐶↓𝑡−𝑛+1 ,…,𝐶↓𝑡−1 )

 Feed-forward or recurrent neural network

Structure of Model

Neural Network
}  1 hidden layer

}  h hidden Unit
}  Use tanh as activation function

}  Output Softmax Layer
𝑃 𝑤↓𝑡  𝑤↓1↑𝑡−1  = 𝑒↑𝑦↓𝑤𝑖  /∑𝑖↑▒𝑒↑𝑦↓𝑖    
}  ith input of output layer 𝑦↓𝑖 :
y=b+Wx+Utanh(d+Hx)
}  b: bias in output layer (|V| elements);
}  W connect feature vectors(a |V|×(n−1)×m) matrix))

}  Could be 0 (non-connected)
}  d: bias in hidden layer(h elements)
}  H is hidden layer weights (h×(n−1) matrix)

Parameters
}  θ=(b,d,W,U,H,C)
}  |V|(1+nm+h)+h(1+(n−1)m) parameters.
}  Maximizes :training corpus penalized log-likelihood
L= 1/𝑇 ∑𝑡↑▒log𝑓(𝑤↓𝑡 ,…, 𝑤↓𝑡−𝑛+1 :θ) +𝑅(θ)
}  Stochastic gradient ascent

For t-th word of the training corpus
θ←θ+ε𝜕log(𝑃 (𝑤↓𝑡 | 𝑤↓1↑𝑡−1 ))/𝜕θ 
ε is learning rate

Implementation: Parallel
}  A lot of Computation
}  Data-Parallel Processing

}  Shared-memory processor, each works on a different
subset of data

}  Asynchronous
}  Expensive

}  Parameter-Parallel Processing
}  Each CPU is responsible for the computation of the

unnormalized probability for a subset of the outputs and
performs the updates

}  low communication overhead

Experiments
}  2 Corpora:
}  Brown corpus:

}  800,000 words stream for training
}  200,000 words stream for validation
}  181,041 words stream for testing
}  |V| = 16383

}  AP News
}  14 million words stream for training
}  1 million words stream for validation
}  1 million words stream for testing
}  |V| = 17964

Experiments
}  Comparison
}  Smoothed trigram model

}  (Jelinek and Mercer, 1980)
}  Back-off n-gram models with the Modified Kneser-

Ney algorithm
}  (Kneser and Ney, 1995, Chen and Goodman., 1999)

}  Class-based n-gram models
}  (Brown et al., 1992, Ney and Kneser, 1993, Niesler et al.,

1998)

Results:

Results:
}  Neural network obtains significantly better results

than the best n-grams model
}  Neural network was able to take advantage of more

context
}  Hidden units are useful
}  Mixing is good

}  neural network and the trigram make errors in different
places

}  Direct connections from input to output

Future Work
}  Decomposing the network in sub-networks
}  Propagating gradients only from a subset of the

output words

