A Neural Probabilistic Language Model

Pengfei Tan

Background

» Statistical Language modeling:

learn the joint probability function of sequences of words
In a language
Given a word sequence wd177, the probability is

» Curse of Dimensionality

a word sequence in test data is likely to be different from
training data

Background

» Traditional Solution
N-grams with smooth or back-off

Only 1 or 2 contexts words taken into account (N in N-
gram is hardly over 3)

Don’t consider Similarity between words:
If we knew:
dog and cat played similar roles
Similarity of (the,a), (bedroom,room), (is,was)
Generalize: The cat is walking in the bedroom
to
A dog was running in a room

Key Idea

» Associated each word to a distributed word feature
vector

» Using feature vector of words in the sequence to
express joint probability function

» Learn simulfaneously the word feature vector and
parameters of probability function word feature

vector

Neural Probabilistic Language Model

» Training Set:

Sequence w!l ,...wl7 of words witel, V is the
vocabulary

» Model to be learnt:

Jwit,...wlt—n+1)=P (wlt |wilTt—1)

Decompose

» 2 parts:
A map C

Mappinng from each i in V to a real vector(distributed
feature vector) C(i)eER Tm

A |V|*m matrix of free parameters in practice
Shared across all the words in the context

Function g
Jawlt—1 .. .wlt—n+1)=g(;,Clt—n+1,...,Clt—1)
Feed-forward or recurrent neural network

Structure of Model

i-th output = P(w; = i | context)

softmax

most| computation here \

tanh

o0)

(eeoe

index for w;_, .1

I
'
’
’
/
4
7’
~_ [Cwia) Clwg) _ -7
- 9)

Matrnix C B
shared parameters
across words

index for w;_> index for w; 4

Neural Network

» 1 hidden layer
h hidden Unit
Use tanh as activation function

» Output Softmax Layer

ith input of output layer yJ::
y=b+Wx+Utanh(d+Hx)
b: bias in output layer (V| elements);

W connect feature vectors(a /V/X(n—1)xm) matrix))
Could be 0 (non-connected)

d: bias in hidden layer(h elements)
H is hidden layer weights (hx (n—1) matrix)

Parameters

» 0=(b,d,W,U,H,C)
» [V/(1+nm+h)+h(1+(n—1)m) parameters.
» Maximizes :training corpus penalized log-likelihood

» Stochastic gradient ascent
For t-th word of the training corpus

0<—0+edlog(P (Wit |\wilTet—1)) /00
e IS learning rate

Implementation: Parallel

» A lot of Computation

» Data-Parallel Processing

Shared-memory processor, each works on a different
subset of data

Asynchronous
Expensive

» Parameter-Parallel Processing

Each CPU is responsible for the computation of the
unnormalized probability for a subset of the outputs and
performs the updates

low communication overhead

Experiments

» 2 Corpora:

» Brown corpus:
800,000 words stream for training
200,000 words stream for validation
181,041 words stream for testing
V| = 16383

» AP News
14 million words stream for training
1 million words stream for validation

1 million words stream for testing
V| = 17964

Experiments

» Comparison

» Smoothed trigram model
(Jelinek and Mercer, 1980)

» Back-off n-gram models with the Modified Kneser-
Ney algorithm
(Kneser and Ney, 1995, Chen and Goodman., 1999)

» Class-based n-gram models

(Brown et al., 1992, Ney and Kneser, 1993, Niesler et al.,
1998)

Results:

n c h | m | direct | mix | tramn. | valid. | test.
MLP1 5 50| 60 [ves no 182 284 | 268
MLP2 5 50| 60| yes | yes 275 | 257
MLP3 5 0[60 | yes | mno 201 327 | 310
MLP4 5 060 yes | yes 286 | 272
MLP5 5 50 | 30 [yes no 209 206 | 279
MLP6 5 50|30 yes | yes 273 | 259
MLP7 3 50 | 30 [wyes no 210 309 | 293
MLPS 3 50|30 yes | yes 284 | 270
MLP9 5 100 [30 | no no 175 280 | 276
MLP10 5 100 [30 | no yes 265 | 252
Del. Int. 3 31 352 | 336
Kneser-Ney back-off | 3 334 | 323
Kneser-Ney back-off | 4 332 | 321
Kneser-Ney back-off | 5 332 | 321
class-based back-off | 3 150 348 | 334
class-based back-off | 3 | 200 354 | 340
class-based back-off | 3 | 3500 326 | 312
class-based back-off | 3 | 1000 335 | 319
class-based back-off | 3 | 2000 343 | 326
class-based back-off | 4 | 3500 327 | 312
class-based back-off | 5| 3500 327 | 312

Results:

» Neural network obtains significantly better results
than the best n-grams model

» Neural network was able to take advantage of more
context

» Hidden units are useful
» Mixing is good

neural network and the trigram make errors in different
places

» Direct connections from input to output

Future Work

» Decomposing the network in sub-networks

» Propagating gradients only from a subset of the
output words

