

Unsupervised word sense disambiguation rivalling supervised methods – D. Yarowsky

Presentation prepared by Nicholas Mifsud

Contents

- Background
 - Supervised vs. Unsupervised Learning
 - Word sense disambiguation
 - Language properties
- Unsupervised Model
 - Steps involved in the training
- Evaluation
- Conclusion & Future Work

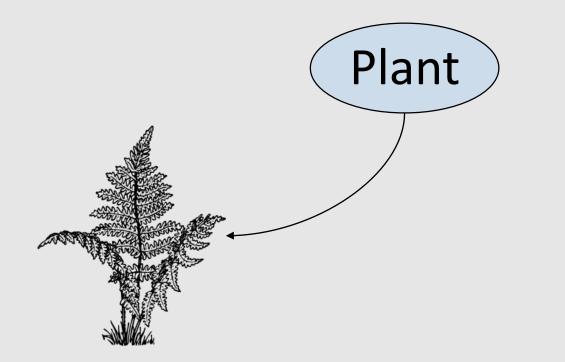
Supervised vs. Unsupervised Learning

- Both seek to infer a classification function from data
- Able to map new examples based on inferred function
- Supervised
 - Have tagged data consisting of pairs
 - Have an error function
- Unsupervised
 - No tags found in data
 - Bases decision on trends found in the data itself

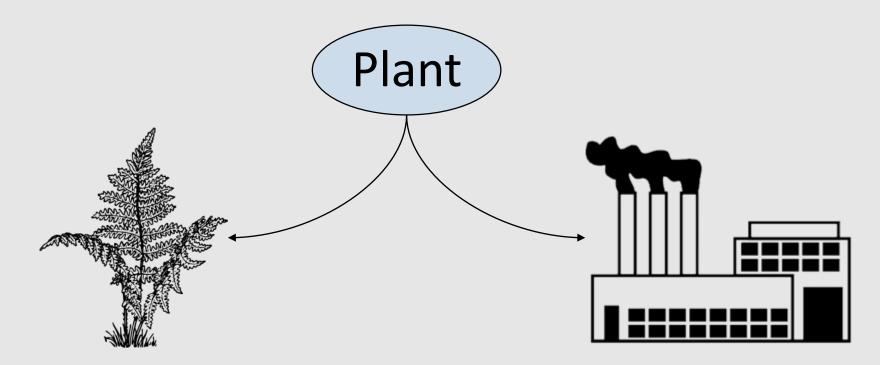
- One word multiple meanings
- Determine meaning through context

- One word multiple meanings
- Determine meaning through context

- One word multiple meanings
- Determine meaning through context



- One word multiple meanings
- Determine meaning through context



One Sense per Discourse

- Words exhibit one sense in a given context
- The sense of a word is the same throughout a document
- Can be used as a source of evidence in sense tagging

Word	Senses	Accuracy	Applicblty
plant	living/factory	99.8 %	72.8~%
tank	vehicle/contnr	99.6 %	50.5 %
poach	steal/boil	100.0 %	44.4 %
palm	tree/hand	99.8 %	38.5 %
axes	grid/tools	100.0 %	35.5 %
sake	benefit/drink	100.0 %	33.7 %
bass	fish/music	100.0 %	58.8 %
space	volume/outer	99.2~%	67.7 %
motion	legal/physical	99.9 %	49.8 %
crane	bird/machine	100.0 %	49.1 %
Averag	e	99.8 %	50.1 %

One Sense per Collocation

- Words close to the ambiguous word give strong evidence to the sense of the word
- Strongest indication by words that are immediately adjacent
- Same collocations may appear in different documents

One Sense per Collocation

- Words close to the ambiguous word give strong evidence to the sense of the word
- Strongest indication by words that are immediately adjacent
- Same collocations may appear in different documents

.... manufacturing plant

.... plant life

Unsupervised Model

- Exploits these linguistic properties
- Begin with a small set of seed examples
- Unsupervised model expands on unseen examples
- Updates seeds as new data is analysed
- No requirement for large amounts of hand-tagged training data
- Disambiguation of 7538 instances of *plant*

Step 1 – Preparing data

- All examples of plant are listed
- Lines included as context
- Untagged training set

Sense	Training Examples (Keyword in Context)
7	company said the <i>plant</i> is still operating
7	Although thousands of <i>plant</i> and animal species
2	
:	zonal distribution of <i>plant</i> life
	to strain microscopic plant life from the
?	vinyl chloride monomer plant, which is
?	and Golgi apparatus of <i>plant</i> and animal cells
?	computer disk drive plant located in
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	divide life into plant and animal kingdom
?	close-up studies of <i>plant</i> life and natural
?	Nissan car and truck plant in Japan is
?	keep a manufacturing plant profitable without
?	molecules found in <i>plant</i> and animal tissue
?	union responses to plant closures
?	animal rather than plant tissues can be
?	many dangers to plant and animal life
7	company manufacturing plant is in Orlando
2	growth of aquatic plant life in water
2	automated manufacturing <i>plant</i> in Fremont,
2	
: 2	Animal and <i>plant</i> life are delicately
:	discovered at a St. Louis plant manufacturing
?	computer manufacturing plant and adjacent
?	the proliferation of <i>plant</i> and animal life
?	

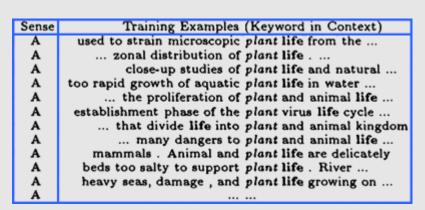
- Identify small number of seed collocations
 - Words in dictionary definitions
 - Single defining collocate for each class
 - Label salient corpus collocates
- Give an indication of the sense
- Tag all training data that contains the seed collocations with the seed's sense label

Sources and the second second

- Identify small number of seed collocations
 - Words in dictionary definitions
 - Single defining collocate for each class
 - Label salient corpus collocates
- Give an indication of the sense
- Tag all training data that contains the seed collocations with the seed's sense label

Some service s

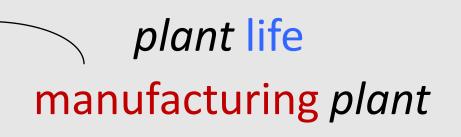
- Identify small number of seed collocations
 - Words in dictionary definitions
 - Single defining collocate for each class
 - Label salient corpus collocates
- Give an indication of the sense
- Tag all training data that contains the seed collocations with the seed's sense label



Sources and the second to the

- Identify small number of seed collocations
 - Words in dictionary definitions
 - Single defining collocate for each class
 - Label salient corpus collocates
- Give an indication of the sense
- Tag all training data that contains the seed collocations with the seed's sense label

Sense	Training Examples (Keyword in Context)	Sens	e Training Examples (Keyword in Context)
Α	used to strain microscopic plant life from the	В	
Α	zonal distribution of plant life	В	automated manufacturing plant in Fremont
A	close-up studies of plant life and natural	B	vast manufacturing plant and distribution
Α	too rapid growth of aquatic plant life in water	В	chemical manufacturing plant, producing visc
A	the proliferation of plant and animal life	В	keep a manufacturing plant profitable witho
Α	establishment phase of the plant virus life cycle	В	computer manufacturing plant and adjacent
Α	that divide life into plant and animal kingdom	В	discovered at a St. Louis plant manufacturing
Α	many dangers to plant and animal life	В	copper manufacturing plant found that they
Α	mammals. Animal and plant life are delicately	В	copper wire manufacturing plant, for example
A	beds too salty to support plant life . River	B	's cement manufacturing plant in Alpena
Α	heavy seas, damage, and plant life growing on	В	polystyrene manufacturing plant at its Dow
Α		В	company manufacturing plant is in Orlando

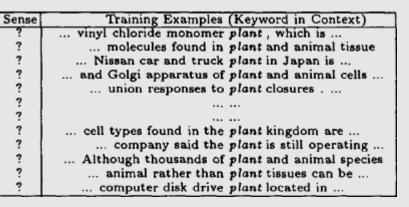


A contraction of the contraction

- Identify small number of seed collocations
 - Words in dictionary definitions
 - Single defining collocate for each class
 - Label salient corpus collocates
- Give an indication of the sense
- Tag all training data that contains the seed collocations with the seed's sense label

Sense	Training Examples (Keyword in Context)
A	used to strain microscopic plant life from the
Α	zonal distribution of plant life
A	close-up studies of plant life and natural
Α	too rapid growth of aquatic plant life in water
A	the proliferation of plant and animal life
Α	establishment phase of the plant virus life cycle
A	that divide life into plant and animal kingdom
Α	many dangers to plant and animal life
Α	mammals . Animal and plant life are delicately
Α	beds too salty to support plant life . River
Α	heavy seas, damage, and plant life growing on
Α	

Training Examples (Keyword in Context)
automated manufacturing plant in Fremont
vast manufacturing plant and distribution
chemical manufacturing plant, producing viscose
keep a manufacturing plant profitable without
computer manufacturing plant and adjacent
discovered at a St. Louis plant manufacturing
copper manufacturing plant found that they
copper wire manufacturing plant, for example
's cement manufacturing plant in Alpena
polystyrene manufacturing plant at its Dow
company manufacturing plant is in Orlando



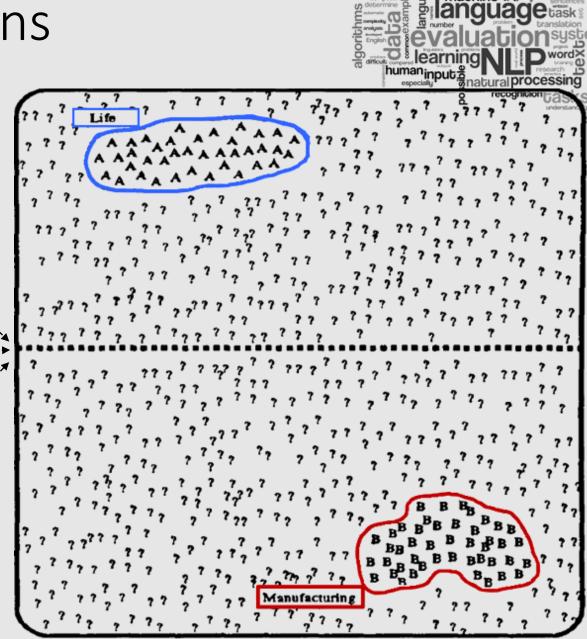
plant life

manufacturing plant

Sense	Training Examples (Keyword in Context)
A	used to strain microscopic plant life from the
Α	zonal distribution of plant life
A	close-up studies of plant life and natural
Α	too rapid growth of aquatic plant life in water
A	the proliferation of plant and animal life
A	establishment phase of the plant virus life cycle
Α	that divide life into plant and animal kingdom
Α	many dangers to plant and animal life
Α	mammals. Animal and plant life are delicately
A	beds too salty to support plant life . River
Α	heavy seas, damage, and plant life growing on
Α	

Sense	Training Examples (Keyword in Context)
В	
В	automated manufacturing plant in Fremont
в	vast manufacturing plant and distribution
В	chemical manufacturing plant, producing viscose
В	keep a manufacturing plant profitable without
в	computer manufacturing plant and adjacent
B B B B B B B B B B B B B B B B B B B	discovered at a St. Louis plant manufacturing
В	copper manufacturing plant found that they
в	copper wire manufacturing plant, for example
В	's cement manufacturing plant in Alpena
В	polystyrene manufacturing plant at its Dow
в	company manufacturing plant is in Orlando
Sense	Training Examples (Keyword in Context)
?	vinyl chloride monomer plant, which is
?	molecules found in plant and animal tissue
?	Nissan car and truck plant in Japan is
?	and Golgi apparatus of plant and animal cells

	Nissan car and truck pront in Japan is
?	and Golgi apparatus of plant and animal cells
?	union responses to plant closures
?	
?	
?	cell types found in the plant kingdom are
?	company said the plant is still operating
?	Although thousands of plant and animal species
?	animal rather than plant tissues can be
?	computer disk drive plant located in



Step 3A

- Supervised algorithm trains on partly partitioned data set (seed sets)
- Identifies other collocations that partition training data.
- Computes word-sense probability distribution for each collocation
 - Collects ±k words of context around all occurrences in data set
 - K increments with each iteration
 - Compute the collocation probability distribution for each context

Collocation	Α	B
plant closure	174	536
animal (within $\pm 2-10$ words)	288	23
life (within $\pm 2-10$ words)	216	1
employee (within $\pm 2-10$ words)	10	70

Step 3A

• Ranks collocations in a decision list based on log likelihood ratio

 $Log(\frac{Pr(Sense_A | Collocation_i)}{Pr(Sense_B | Collocation_i)})$

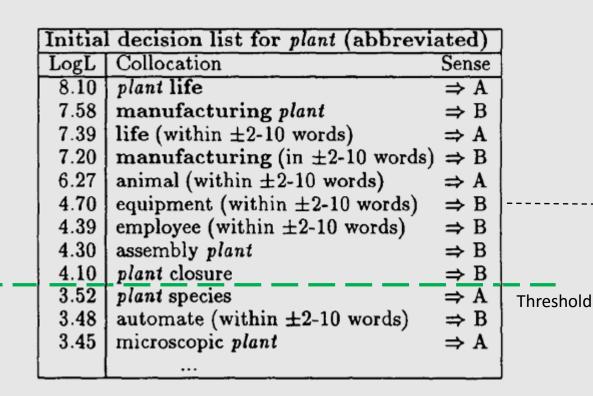
Sense	Training Examples (Keyword in Context)
A	used to strain microscopic plant life from the
A	zonal distribution of plant life
Α	close-up studies of plant life and natural
Α	too rapid growth of aquatic plant life in water
A	the proliferation of plant and animal life
A	establishment phase of the plant virus life cycle
A	that divide life into plant and animal kingdom
Α	many dangers to plant and animal life
Α	mammals . Animal and plant life are delicately
A	beds too salty to support plant life . River
A	heavy seas, damage, and plant life growing on
Α	

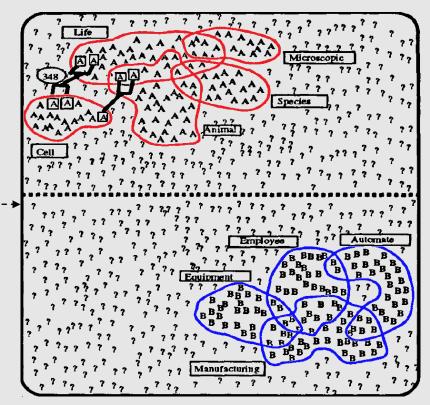
-	
Sense	Training Examples (Keyword in Context)
В	
В	automated manufacturing plant in Fremont
B B	vast manufacturing plant and distribution
В	chemical manufacturing plant, producing viscose
B B	keep a manufacturing plant profitable without
в	computer manufacturing plant and adjacent
B B B B	discovered at a St. Louis plant manufacturing
В	copper manufacturing plant found that they
в	copper wire manufacturing plant, for example
	's cement manufacturing plant in Alpena
в	polystyrene manufacturing plant at its Dow
B	company manufacturing plant is in Orlando

Initial decision list for <i>plant</i> (abbreviated)			
LogL	Collocation	Sense	
8.10	plant life	\Rightarrow A	
7.58	manufacturing plant	⇒ B	
7.39	life (within $\pm 2-10$ words)	\Rightarrow A	
7.20	manufacturing (in $\pm 2-10$ words)	⇒B	
6.27	animal (within $\pm 2-10$ words)	\Rightarrow A	
4.70	equipment (within $\pm 2-10$ words)	⇒ B	
4.39	employee (within $\pm 2-10$ words)	⇒ B	
4.30	assembly plant	⇒ B	
4.10	plant closure	⇒ B	
3.52	plant species	\Rightarrow A	
3.48	automate (within $\pm 2-10$ words)	⇒ B	
3.45	microscopic plant	\Rightarrow A	

Step 3B

- And the second to the second t
- Apply members of classifier decision list that have probability greater than a threshold to untagged data set
- Threshold follows a simulated annealing technique
- Extends seed set with these new collocations and tags new data





Step 3C

- One sense per discourse constraint used to augment addition
- If several instances of the ambiguous word has already been assigned a tag then the tag can extend to all examples in that discourse

Change in tag		Training Examples (from same discourse)
$A \rightarrow A$	724	the existence of plant and animal life
$ A \rightarrow A $	724	classified as either plant or animal
$? \rightarrow A$	724	Although bacterial and plant cells are enclosed
$A \rightarrow A$	348	the life of the plant, producing stem
$ A \rightarrow A $	348	an aspect of plant life, for example
$? \rightarrow A$	348	tissues ; because plant egg cells have
$? \rightarrow A$	348	photosynthesis, and so plant growth is attuned

Step 3C

- One sense per discourse constraint used to augment addition
- If several instances of the ambiguous word has already been assigned a tag then the tag can extend to all examples in that discourse

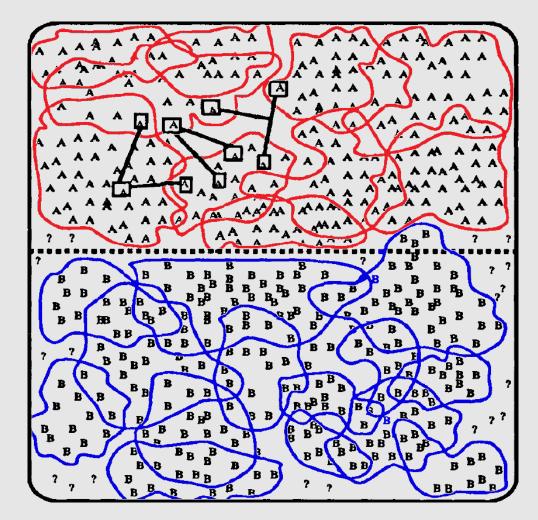
Change in tag		Training Examples (from same discourse)
$A \rightarrow A$	724	the existence of plant and animal life
$A \rightarrow A$	724	classified as either plant or animal
$? \rightarrow A$	724	Although bacterial and plant cells are enclosed
$A \rightarrow A$	348	the life of the plant, producing stem
$ \mathbf{A} \rightarrow \mathbf{A} $		an aspect of plant life, for example
$? \rightarrow A$	348	tissues ; because plant egg cells have
$? \rightarrow A$	348	photosynthesis, and so plant growth is attuned

This could form a bridge to new collocations and can perform error correction

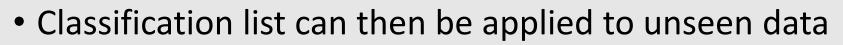
Change	Disc.	
in tag	Numb.	Training Examples (from same discourse)
$A \rightarrow A$	525	contains a varied plant and animal life
$A \rightarrow A$	525	the most common plant life, the
$A \rightarrow A$	525	slight within Arctic plant species
$B \rightarrow A$	525	are protected by plant parts remaining from

Step 3D & 4

• Step 3 is repeated until algorithm converges on a stable state



Step 5



Final decision list for <i>plant</i> (abbreviated)							
LogL	Collocation	Sense					
10.12	plant growth	\Rightarrow A					
9.68	car (within $\pm k$ words)	⇒ B					
9.64	plant height	\Rightarrow A					
9.61	union (within $\pm k$ words)	⇒ B					
9.54	equipment (within $\pm k$ words)	⇒ B					
9.51	assembly plant	⇒ B					
9.50	nuclear plant	⇒ B					
9.31	flower (within $\pm k$ words)	⇒ A					
9.24	job (within $\pm k$ words)	⇒ B					
9.03	fruit (within $\pm k$ words)	⇒ A					
9.02	plant species	⇒ A					
	•••						

Step 5

• Classification list can then be applied to unseen data

Final	decision list for plant (abbre	viated)	
LogL	Collocation	Sense	Original seed
10.12	plant growth	⇒ A	
9.68	car (within $\pm k$ words)	⇒ B	collocations not at the
9.64	plant height	⇒ A	top anymore
9.61	union (within $\pm k$ words)	⇒ B	
9.54	equipment (within $\pm k$ words)	⇒ B	
9.51	assembly plant	⇒ B	
9.50	nuclear plant	⇒ B	
9.31	flower (within $\pm k$ words)	⇒ A	
9.24	job (within $\pm k$ words)	⇒ B	
9.03	fruit (within $\pm k$ words)	⇒ A	
9.02	plant species	⇒ A	
			j

Noise & Initial Misclassifications

- As algorithm progresses and analyses more data, seeds may change their associated sense, making it resistant to noise
- If collocations are previously in the seed set but are then dropped from the set as their probability goes below threshold due to new data, their associated data is untagged
- This data is then re-tagged in the following iterations, overcoming potential misclassifications

Evaluation

- 460 million word corpus
 - News articles
 - Scientific abstracts
 - Spoken transcripts
 - Novels
- Varied seed selection strategies
- Varied location of one word per discourse constraint
- Compared against Schütze algorithm hierarchical clustering
- Compared against full supervised training using decision list algorithm

Results

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
			%		Seed Training Options		(7) + OSPD			
		Samp.	Major	Supvsd	Two	Dict.	Top	End	Each	Schütze
Word	Senses	Size	Sense	Algrtm	Words	Defn.	Colls.	only	Iter.	Algrthm
plant	living/factory	7538	53.1	97.7	97.1	97.3	97.6	98.3	98.6	92
space	volume/outer	5745	50.7	93.9	89.1	92.3	93.5	93.3	93.6	90
tank	vehicle/container	11420	58.2	97.1	94.2	94.6	95.8	96.1	96.5	95
motion	legal/physical	11968	57.5	98.0	93.5	97.4	97.4	97.8	97.9	92
bass	fish/music	1859	56.1	97.8	96.6	97.2	97.7	98.5	98.8	-
palm	tree/hand	1572	74.9	96.5	93.9	94.7	95.8	95.5	95.9	-
poach	steal/boil	585	84.6	97.1	96.6	97.2	97.7	98.4	98.5	-
axes	grid/tools	1344	71.8	95.5	94.0	94.3	94.7	96.8	97.0	-
duty	tax/obligation	1280	50.0	93.7	90.4	92.1	93.2	93.9	94.1	-
drug	medicine/narcotic	1380	50.0	93.0	90.4	91.4	92.6	93.3	93.9	-
sake	benefit/drink	407	82.8	96.3	59.6	95.8	96.1	96.1	97.5	-
crane	bird/machine	2145	78.0	96.6	92.3	93.6	94.2	95.4	95.5	-
AVG		3936	63.9	96.1	90.6	94.8	95.5	96.1	96.5	92.2

Conclusion

- Makes use of strong properties from language
 - One sense per collocation
 - One sense per discourse
- Strong discriminating information as context is used
- Builds on top of a supervised model Bootstrapping technique
- Outperforms Schütze's algorithm and supervised model
- Achieves these rates without laborious task of tagging data!

Future Work

- Limited to binary sense partition easily extended to K partitions, but what about higher dimensionality of data?
- This approach builds up on a supervised mechanism to avoid the cold start problem, what if a fully unsupervised approach is used from the initial stage?

Reference

 Yarowsky, David. "Unsupervised word sense disambiguation rivalling supervised methods." *Proceedings of the 33rd annual meeting on Association for Computational Linguistics*. Association for Computational Linguistics, 1995.

Questions?

Thank you for your attention!