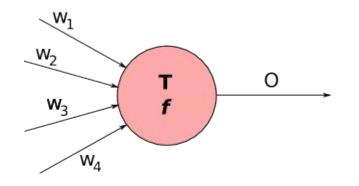
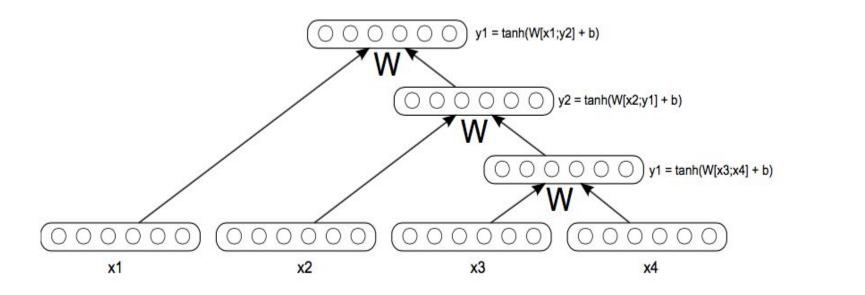

Learning Continuous Phrase Representations and Syntactic Parsing with Recursive Neural Networks


with Mattias Appelgren

The problem

Neural Networks!


Perceptron

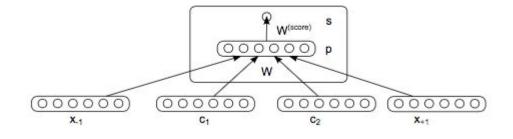
- W_{1-4} Weights
- T Threshold
- **f** Output function
- O Output

Recursive Neural Network

Model 1: Greedy RNN

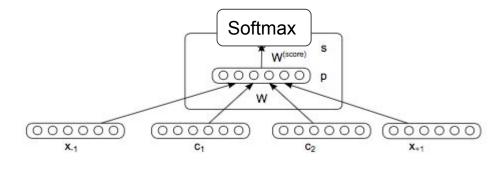
Input: x₁, x₂, x₃, x₄

 $(c_1, c_2) := x_1, x_2 \rightarrow p = tanh(W[c_1; c_2] + b)$


s_{1,2} = W^{score} p

Next layer: $x_1, x_2, p_{(3,4)}$

Final layer: p_{(1,(2(3,4)))} p_{((1,2),(3,4))}


Model 2: Context Dependent Greedy RNN

- $s = W^{score}p \tag{4}$
- $p = \tanh(W[x_{-1};c_1;c_2;x_{+1};]+b^{(1)})$

Model 3: Greedy CRNN and Category Classifier

- $s = W^{score}p \tag{4}$
- $p = anh(W[x_{-1};c_1;c_2;x_{+1};]+b^{(1)})$

Model 4: Max-Margin Framework with Beam-Search

Training data: (sentence, tree) -> (x_i, y_i)

 $A(x_i)$: set of all possible trees created from a sentence

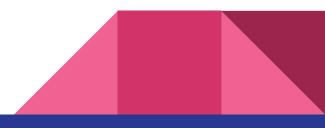
$$J=\sum_i s(x_i,y_i)-\max_{y\in A(x_i)}\left(s(x_i,y)+\Delta(y,y_i)
ight) \ (s(x_i,y)+\Delta(y,y_i))$$

 $s(x_i,y_i)=\sum_{d\in T(y_i)}s_d(c_1,c_2).$ $\Delta(y,y_i)=\sum_{d\in T(y)}\lambda\mathbf{1}\{d\notin T(y_i)\}.$

Training

Look-up table trained on 611 million unlabeled words

Use words with more than 2 occurrences -> vocabulary of 15.942


Make all numbers 2

100 dimensional word representation

Results: Unlabeled bracketing on WSJ

Method	F1
Model 1 (Greedy RNN)	76.55
Model 2 (Greedy, context-aware RNN)	83.36
Model 3 (Greedy, context-aware RNN + category classifier)	87.05
Model 4 (Beam, context-aware RNN + category classifier)	92.06
Left Corner PCFG, [MC97]	90.64
Current Implementation of the Stanford Parser, [KM03]	93.98

More Results

POS tagging: 93.86% accuracy

Category (non-terminal) classification: 82%

On a 2.6GHz laptop our current matlab implementation needs 72 seconds to parse 421 sentences of length less than 15.

Results: Phrase Nearest Neighbours

(C) A DPC spokesman declined to elaborate on the group's new plan

- 1. Those two offers were private and the spokesman refused to identify the bidding companies.
- 2. Among the firms were Merrill Lynch & Co. and Dean Witter Reynolds Inc.
- 3. The real key is to have the economy working and interest rates down.
- 4. The market upheaval apparently has n't triggered any cash crunch yet.

(E) Columbia, S.C (F) Fujisawa gained 22 to 2,222

- 1. Greenville, Miss
- 1. Mochida advanced 22 to 2,222.

2. UNK, Md

- Commerzbank gained 2 to 222.2.
 Paris loved her at first sight.
- 3. UNK, Miss
- 4. UNK, Calif

4. Profits improved across Hess 's businesses.

Any Questions?

