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Motivation

Observation
Semi-supervised NLP systems achieve higher accuracy than their
supervised counterparts.

Problem
Which features - or combination thereof - to use given a task?

Focus
Clustering-based and distributed representations.
Sequence labelling tasks: NER and chunking.
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Distributional Representations

Aim
Generate a cooccurence matrix F of size WxC .

Settings

Choose a context (window direction and size).
Choose a count.
Choose a function g to reduce dimensionality of Fw .

Previous Literature
[Salgren, 2006] Improves classification tasks (e.g. IR, WSD). Not known
which settings ideal for NER & chunking.
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Brown Clustering

Aim
Generate K hierarchical clusters based on bigram mutual information.

Sample output:
cat 1101

dog 1100

city 1001

town 1011

Pros & Cons
Hierarchy allows to choose among several levels.
Use of bigrams is restrictive.
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Distributed Representations

Aim
Use a neural network to generate word vectors whose features capture
latent semantic and syntactic properties.
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Distributed Representations
[Collobert & Weston, 2008]

Training

I for each epoch
I Read an n-gram x = (w1, ...,wn)
I Calculate e(x) = e(w1)⊕ ....⊕ e(wn)
I Pick a corrupted n-gram x̃ = (w1, ...,wn−q, w̃n) and calculate e(x̃)
I Get s(x) by passing e(x) through SLNN.
I L(x) = max(0, 1− s(x) + s(x̃)
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Distributed Representations
Hierarchical Log-Bilinear model [Mnih & Hinton, 2009]

Training

Given an n-gram, concatenate embeddings of n − 1 first words.
Learn a linear model to predict the last word.
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Aims

Hypothesis

It is a task-independent generalisation that supervised NLP systems can be
improved by adding word representations as word vectors (thus turning
them into semi-supervised systems).

Method
Compare semi-supervised models obtained with off-the-shelf embeddings
to previous ones with task-specific information, in particular
[Ando & Zhang, 2005] and [Suzuki & Isozaki, 2008] for chunking and
[Lin & Wu, 2009] for NER.
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Chunking

Syntactic sequence labelling task, consisting of identifying phrases.

Method
Use publicly available CRFsuite chunker.
Add word embedding features learnt from RCV1 corpus (1.3M sentences).
Train on 8.9K sentences of WSJ newswire in Penn Treebank corpus.
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NER

Classification task.

Method
Use publicly available system by [Ratinov & Roth 2009].
Train on 14K sentences of Reuters newswire from CoNLL03 dataset.
Add word embedding features learnt from RCV1 corpus (1.3M sentences).
Test on Reuter + out-of-domain dataset MUC7 (with unseen NE types).
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Induction of Word Representations

Brown
Models with 1000, 100, 320, and 3200 clusters.
Used clusters at depth 4, 6, 10, and 20.

Collobert & Weston
50 epochs.
Embeddings of dimensionality 25, 50, 100, or 200 learnt over 5-gram
windows.

HLBL
Embeddings of dimensionality 100 learnt over 5-gram windows.
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Scaling of Embeddings

In all cases, the features are bounded by a scaling constant σ that sets
their new standard deviation.

E ← σ · /stddev(E ) (1)
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Results

Influence of capacity of embeddings
on chunking (top) and NER
(bottom)
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Results

Final results for chunking.
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Results

Final results for NER.
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Results

Per-token errors given word
frequency in chunking (top) and
NER (bottom).
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Conclusion

These models do not outperform the state-of-the-art semi-supervised by
[Ando & Zhang, 2005], [Suzuki & Isozaki, 2008], and [Lin & Wu, 2009].

However, they are more general, and prove that task-agnostic embeddings
can be used to improve supervised systems.

It is also found that Brown embeddings are better for rare words, and a
default method for scaling is presented.

Extending the embeddings to phrase representations may be useful.
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The End
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