LINGZHE ZHAO S1502670@SMS.ED.AC.UK

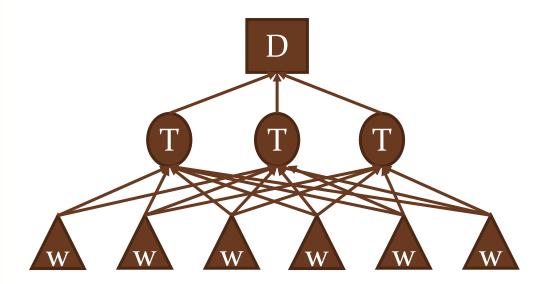
Topic modelling

Probabilistic Topic Models

Mark Steyvers University of California, Irvine

> Tom Griffiths Brown University

Introduction



Topic 247

Topic 5

word	prob.
DRUGS	.069
DRUG	.060
MEDICINE	.027
EFFECTS	.026
BODY	.023
MEDICINES	.019
PAIN	.016
PERSON	.016
MARIJUANA	.014
LABEL	.012
ALCOHOL	.012
DANGEROUS	.011
ABUSE	.009
EFFECT	.009
KNOWN	.008
PILLS	.008

word	prob.
RED	.202
BLUE	.099
GREEN	.096
YELLOW	.073
WHITE	.048
COLOR	.048
BRIGHT	.030
COLORS	.029
ORANGE	.027
BROWN	.027
PINK	.017
LOOK	.017
BLACK	.016
PURPLE	.015
CROSS	.011
COLORED	.009

Introduction

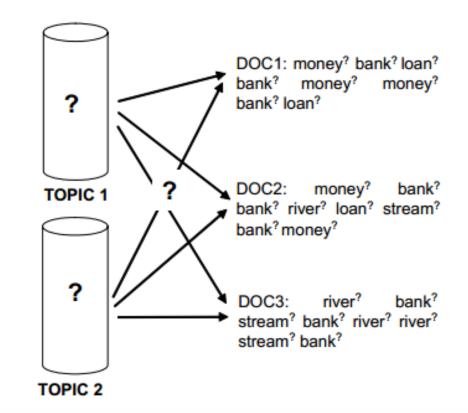


• Advantage : Each topic is individually interpretable, providing a probability distribution over words that picks out a coherent cluster of correlated terms.

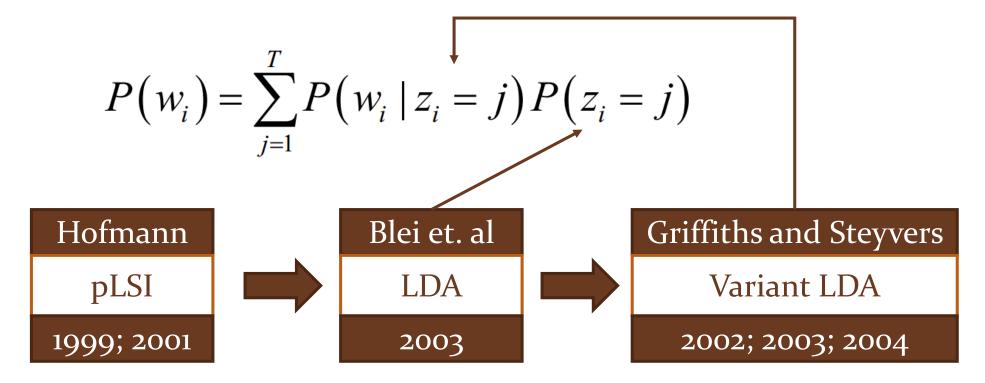
Generative Models

PROBABILISTIC GENERATIVE PROCESS

Doner money DOC1: money1 bank1 loan1 1.0 bank¹ money¹ money¹ loan bank1 loan1 bank 5 money¹ DOC2: bank¹ TOPIC 1 bank² river² loan¹ stream² bank¹ money¹ iver bank stream a DOC3: river² bank² struer Yueg stream² bank² river² river² 1.0 stream² bank² **TOPIC 2**



STATISTICAL INFERENCE



LDA(Latent Dirichlet Allocation)

The probability density of a T dimensional Dirichlet distribution over the multinomial distribution $p = (p_1, ..., p_T)$ is defined by:

$$\operatorname{Dir}(\alpha_1, \dots, \alpha_T) = \frac{\Gamma\left(\sum_j \alpha_j\right)}{\prod_j \Gamma\left(\alpha_j\right)} \prod_{j=1}^T p_j^{\alpha_j - 1} \qquad ?$$

The Dirichlet is a convenient distribution on the simplex — it is in the exponential family, has finite dimensional sufficient statistics, and is conjugate to the multinomial distribution. In Section 5, these properties will facilitate the development of inference and parameter estimation algorithms for LDA.

Dirichlet distribution

$$\operatorname{Dir}(\boldsymbol{\mu}|\boldsymbol{\alpha}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_K)} \prod_{k=1}^{K} \mu_k^{\alpha_k - 1}$$

From PRML

posterior distribution for the parameters $\{\mu_k\}$ in the form

$$p(\boldsymbol{\mu}|\mathcal{D}, \boldsymbol{\alpha}) \propto p(\mathcal{D}|\boldsymbol{\mu})p(\boldsymbol{\mu}|\boldsymbol{\alpha}) \propto \prod_{k=1}^{K} \mu_k^{\alpha_k + m_k - 1}.$$

From PRML

We see that the posterior distribution again takes the form of a Dirichlet distribution, confirming that the Dirichlet is indeed a conjugate prior for the multinomial.

Variant LDA

Arrows indicate conditional dependencies between variables

Plates (the boxes in the figure) refer to repetitions of sampling steps

Variable in the lower right corner referring to the number of samples. α $\theta^{(d)}$ z

 $\zeta(z)$

Т

 $\theta^{(d)} \sim \mathbf{P}(z_i = j)$

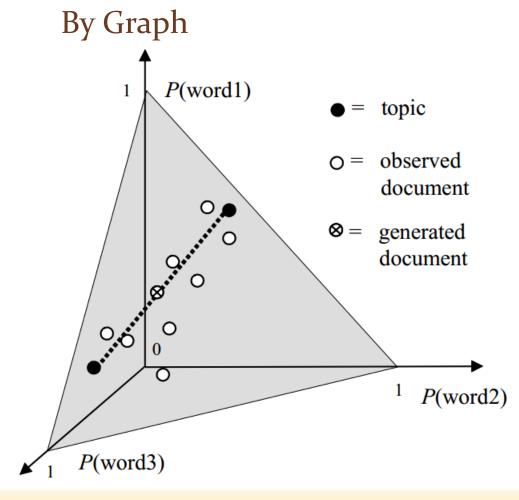
w

 N_{J}

 $\phi^{z} \sim P(w_{i}|z_{i}=j)$

 α, β ~hyperparameter

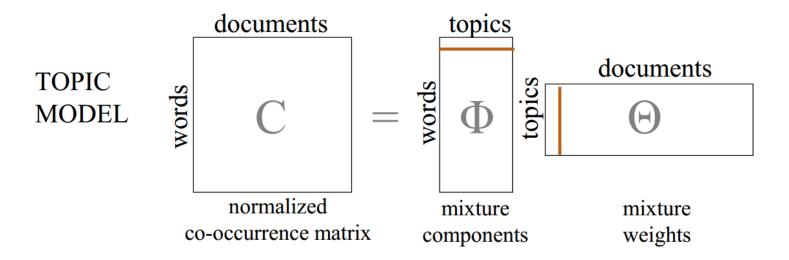
Interpretation



- Each axis represents the probability of observing a particular word type.(with W dimentions)
- •The W-1 dimensional simplex represents all probability distributions over words.
- •Each **document** and **topic** in the text collection can be represented as a point on the simplex
- •Each document that is generated by the model is a convex combination of the T topics

Interpretation

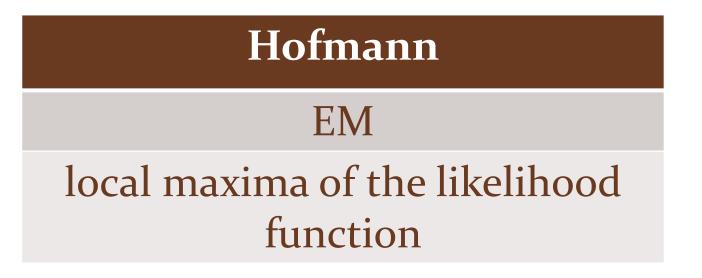
By Matrix Factorization



- •Feature values are non-negative and sum up to one.
- •Topic-word distributions are independent but not orthogonal

$$\theta^{(d)} \sim P(z_i = j)$$

$$\phi^z \sim P(w_i | z_i = j)$$



θ,φ –

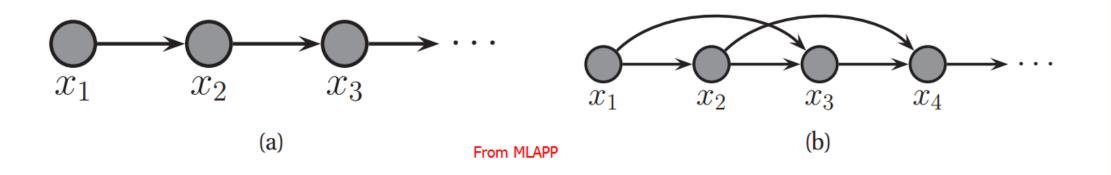
Many text collections contain millions of word token.

The estimation of the posterior over z requires efficient estimation procedures.

Gibbs sampling is one of the best choices.

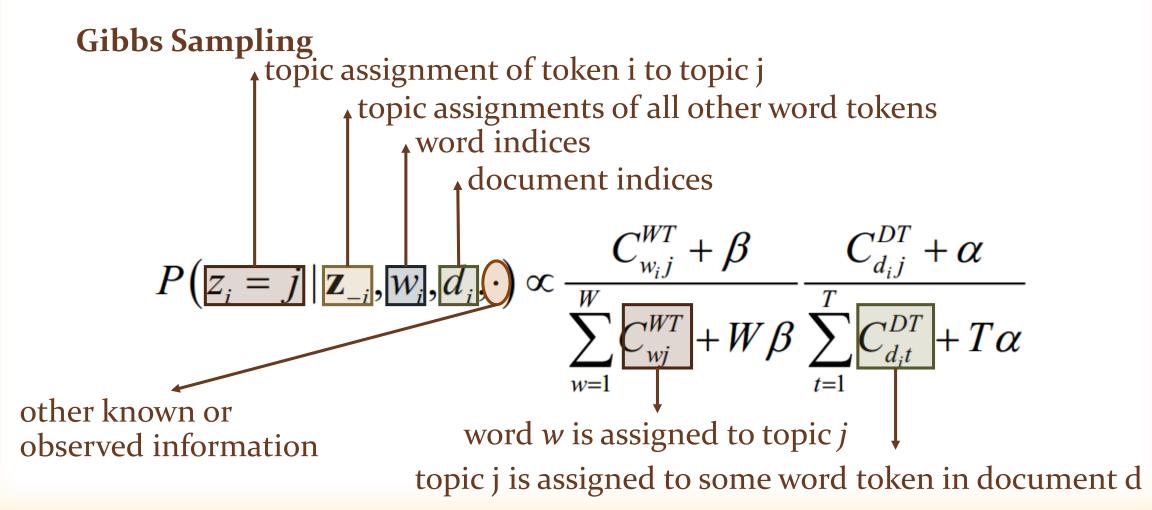
Directly estimate the posterior distribution

MCMC



$$p(X_{1:T}) = p(X_1)p(X_2|X_1)p(X_3|X_2)\ldots = p(X_1)\prod_{t=2}^T p(X_t|X_{t-1})$$

From MLAPP

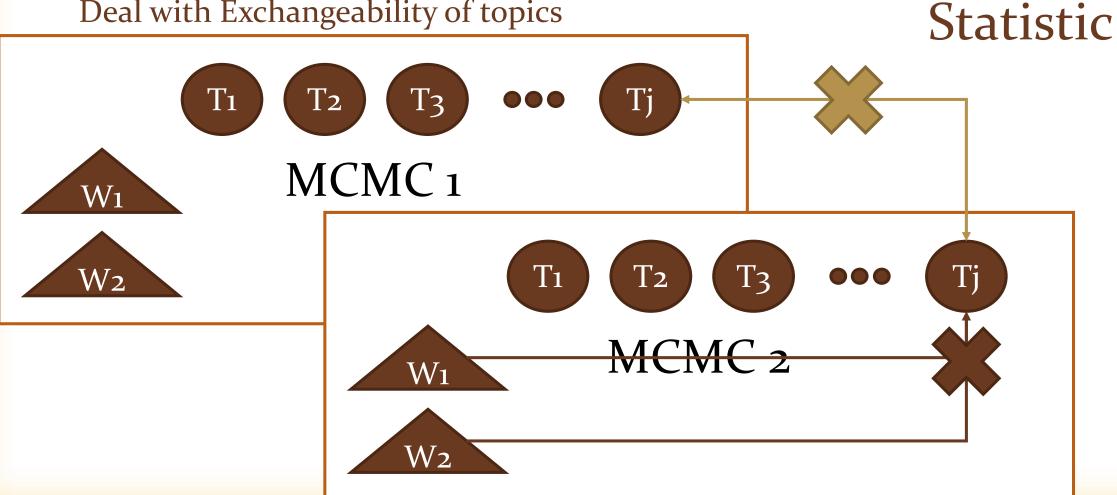


 $C_{WT} \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} & c1T \\ c_{21} & c_{22} & \cdots & c_{2t} & c_{2T} \\ c_{31} & \vdots & \ddots & \vdots & c_{3T} \\ c_{W1} & c_{W2} & \cdots & c_{Wt} & c_{WT} \\ c_{W1} & c_{W2} & c_{W3} & c_{Wt} & c_{WT} \end{bmatrix}$

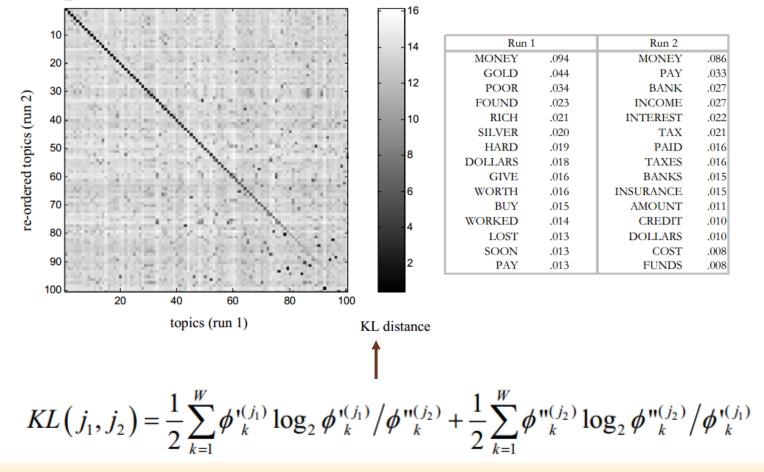
	[<i>C</i> ₁₁	<i>C</i> ₁₂	<i>C</i> ₁₃	<i>C</i> ₁₄	c1T	
	C ₂₁	<i>C</i> ₂₂	• • •	C_{2t}	C_{2T}	
C_{DT}	C ₃₁	• •	•••	•	C_{3T}	
	C_{d1}	C_{d2}	• • •	C _{dt}	C_{dT}	
	LC_{D1}	C_{D2}	C_{D3}	C _{Dt}	c1T c_{2T} c_{3T} c_{dT} c_{DT}	

$$\begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} & P1T \\ P_{21} & P_{22} & \cdots & P_{2t} & P_{2T} \\ P_{31} & \vdots & \ddots & \vdots & P_{3T} \\ P_{w1} & P_{w2} & \cdots & P_{wt} & P_{wT} \\ P_{W1} & P_{W2} & P_{W3} & P_{Wt} & P_{WT} \end{bmatrix}$$

Deal with Exchangeability of topics



Stability of Topics



Conclusion

•Generative Models

• Different representations

•Improvement