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Introduction

➤ Learn a generative model which maps sentences with a 
hierarchical meaning representation.

Sentence 
(Natural language)

Meaning 
Representation

"How many states do 
not have rivers?"
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Introduction

➤ Learn a generative model which maps sentences with a 
hierarchical meaning representation. 

➤ The meaning representation will be in the form of a hybrid tree 

➤ To improve on the generative model, will use a reranking 
algorithm to pick the best tree from a set of top k candidates.
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Meaning Representations (MR)

➤ Formal semantic representation written in some meaning 
representation language (MRL)
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Meaning Representations (MR)

➤ Formal semantic representation written in some meaning 
representation language (MRL) 

➤ E.g. "How many states do not have rivers?"
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Meaning Representations (MR)

➤ Formal semantic representation written in some meaning 
representation language (MRL) 

➤ E.g. "How many states do not have rivers?"

Inorder traversal:
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➤ Formal semantic representation written in some meaning 
representation language (MRL) 

➤ Each production consists of:

Meaning Representations (MR)

• Semantic category 

• Function symbol 

• Arguments
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Generative model

➤ The aim of the generative model is to simultaneously generate 
NL sentences and MR structures: 

➤ This is an example partial hybrid tree:
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Building a tree

✦ Sentence:                                                ✦ MR structures:  

✦ MR productions:                                       

➤ Process to generate hybrid tree      :  

➤ Given semantic category         pick a production   

➤ Generate child nodes as hybrid sequence 

➤ Repeat recursively on new category nodes  

➤ On a full tree the leaves will all be sentence tokens
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Probability of a tree

➤ Based on independence assumptions, probability of
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Probability of a tree

➤ Based on independence assumptions, probability of 

➤ Possible hybrid patterns:
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Probability of a tree

➤ Based on independence assumptions, probability of
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Parameter types

➤ Three categories of parameters: 

➤ MR model parameters: 

➤ Emission parameters: 
 
                                                          

➤ Pattern parameters: 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Models

➤ Three models based different context assumptions 

➤ Model 1 assumes: 

➤ Model 2 assumes: 

➤ Model 3 assumes:
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Parameter estimation

➤ MR parameters 

➤ Simply count productions from the corpus.  

➤ Then normalise. 

➤ Generative parameters: (Emission and Pattern) 

➤ Do not know alignment between words and MR 

➤ Use Expectation Maximisation to re-estimate parameters 

➤ via Inside-Outside dynamic programming 

➤ Smoothing
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Decoding

➤ Find MR structure       for  a sentence 

➤ This summation is very expensive so instead : 

➤ Find best approximate 

➤ Used candidate ranking algorithm to find top k and then 
Viterbi to select best.
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Re-ranking and filtering

➤Generative model unable to model long range 
dependencies 

➤What if wrong candidate is chosen? 
➤Postprocess with discriminative re-ranking 

algorithm
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Averaged Perceptron

➤ Three components: 

➤ GEN function: finds set of candidate trees for sentence. 

Use decoding function to output k hybrid trees.  
For system k = 50 

➤ Reference tree for each training instance 

Run Viterbi on each pair to find best reference 

➤ Feature function : mapping a tree to a feature vector
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Feature vector
➤ Features 

➤ 1-5: Indicator features 

➤ 6: Real value 

➤ Learns a weight vector     for each               

➤ Aggregate      into a score for each  

➤ Pick best candidate tree 

➤ Separating plane to optimise f-measure
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Evaluation training

➤ Two corpora: 

➤ GEOQUERY: MR defined by Prolog-based language (880) 

➤ ROBOCUP: MR defined by robot coaching language (300) 

➤ Training: 

➤ Train 100 iterations of EM on Model I 

➤ Use these to initialise Model II, train further 100 its 

➤ Model III: Interpolation 

➤ Reranking: Run perceptron for 10 iterations 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Measure correctness

➤ Correctness: 

➤ GEOQUERY:  
MR is correct when it retrieves identical results to 
reference MR. 

➤ ROBOCUP: 
MR is correct when it has same string representation  
as the reference MR.
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Evaluation metrics

➤ Precision 

% answered sentences which are correct /  All sentences 

➤ Recall 

% correctly answered sentences / All sentences 

➤ F-measure 

Harmonic mean of Precision and Recall
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Evaluation of Models I, II and III
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Compared to other models
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Performance in other languages
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Conclusion

➤ New generative model that simultaneously produces both NL 
sentences and their corresponding MR structures.  

➤ This is combined with dynamic algorithms for training and re-
ranking to provide best candidate. 

➤ Has state-of-art performance, outperforming other similar 
models when tested on two corpora. 

➤ System is also language-independent. 

➤ Would be interesting to see future work on generating a 
sentence from an MR structure.
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