
Michael	Karlen
Koray Kavukcuoglu

Pavel	Kuksa

Speaker:	Jason	Chen

Ronan	Collobert
Jason	Weston

Léon	Bottou

Natural	Language	Processing	
(almost)	from	Scratch



Motivation		&	Benchmark	Test

Part-of-speech	tagging	 (POS)

Chunking	 (CHUNK)

Named	entity	recognition	 (NER)

Semantic	Role	Labeling	(SRL)



Part-of-speech	tagging

Chunking

Named	entity	recognition

Semantic	Role	Labeling

Motivation
Benchmark	
Test

• Labeling	each	word	with	an	
unique	tag	that	indicates	its	
syntactic	role.
• E.g.	Noun	Phrases	(NP),	Verb	
Phrases	(VP),	Determiner	(Det),	
etc..

&



Part-of-speech tagging

Chunking

Named	entity	recognition

Semantic	Role	Labeling

• Labeling	segments	of	a	sentence	
with	syntactic	constituents	such	
as	noun	or	verb	phrases	(NP	or	
VP).
• Each	word	is	assigned	only	one	
unique	tag
• E.g.	B-NP	for	begin-chunk	tag,	I-
NP	for	inside-chunk	tag.

Motivation
Benchmark	
Test

&



Part-of-speech tagging

Chunking

Named	entity	recognition

Semantic	Role	Labeling

• Labeling	atomic	elements	in	
the	sentence	into	categories.
• E.g.	PERSON,	LOCATION,	DATE,	
NUMERIC

Motivation
Benchmark	
Test

&



Part-of-speech tagging

Chunking

Named	entity	recognition

Semantic	Role	Labeling

• Giving	a	semantic	role	to	a	
syntactic	constituent	of	a	sentence.
• Feature	categories	include:

• The	POS	and	syntactic	labels	of	
words;

• The	Node’s	position	in	relation	to	the	
verb;

• The	syntactic	path	to	the	verb	in	the	
parse	tree;

• The	verb	sub-categorization;
• The	voice	of	the	sentence:	active	or	
passive.

• E.g.	John ate the	apple
ARG0											REL														ARG1

Motivation
Benchmark	
Test

&



Neural	Network	Structure
Traditional	Approach

1. Extract	a	rich	set	of	hand	designed	
feature	from	sentence.

2. Feed	the	feature	set	into	
classification	algorithm,	 such	as	
Support	 Vector	Machine	(SVM)	
with	a	linear	kernel.

Neural	Network	Approach

1. Takes	the	feature	vectors	of	
complete	sentence/segment	of	text	
(window).

2. Passes	through	 the	lookup	 table	
layer,	transform	words	into	feature	
vectors.

3. Produces	local	features	around	
each	word	of	the	sentence	using	
linear/convolutional	 layers.

4. Combine	 local	features	into	a	
global	 feature	vector.

5. Feed	into	standard	affine	layers.



Transform	Words	into	
Feature	Vectors
• Maps	each	word	indices	into	feature	vectors	by	
a	look	up	table	operation.

• Consider	of	efficiency,	words	are	feeding	as	
indices.

• Formally	noted	as	

LT# 𝓌 = 𝑊 𝓌
' ,	 	𝓌 ∈𝒟

• The	above	equation	can	be	extend	as
LT# 𝓌 '

+ = 𝑊 𝓌
'

1

Cat
Feature	1 𝓌'

'

Feature	2
⋮

𝓌'
5

⋮
Feature	𝑘 𝓌'

7



Transform	Words	into	
Feature	Vectors	-
Extend
• Extend	to	any	discrete	features,	provide	features	

other	than	words	if	one	suspects	that	these	
features.

• E.g.	pre-processing	 keeps	case	information.
• Formally	noted	as	

LT89,…,#< 𝓌 =
𝑊 𝓌=

'

…
𝑊 𝓌=

'

• The	above	equation	can	be	extend	 as	

LT89 ,…,#< 𝓌 '
+ =

𝑊 𝓌9 9
' ⋯ 𝑊 𝓌9 ?

'

⋮ ⋱ ⋮
𝑊 𝓌= 9

' ⋯ 𝑊 𝓌= ?
'

Cat
Feature	1 𝓌'

'

Feature	2
⋮

𝓌'
5

⋮
Feature	𝑘 𝓌'

7

Feature	1 𝓌'
'

Feature	2
⋮

𝓌'
5

⋮
Feature	𝑘 𝓌'

7

Vector	1

Vector	2

1



Extract	High	Level	Features				
from	Word	Feature	Vector	

2



• Variable	length	equals	to	width	of	the	window	
𝑘DE.

• Given	a	word	to	tag,	a	fixed	size	window	of	
words	around	 this	word.

• Each	window	passed	through	 the	lookup	 table	
layer,	producing	 a	word	features	matrix	with	size	
𝑑GHI×𝑘DE

𝑓L' = LT# 𝓌 '
+

M
INOP =

𝑊 𝓌 QRSNOP/U
'

⋮
𝑊 𝓌 Q

'

⋮
𝑊 𝓌 QVSNOP/U

' 2

Extract	High	Level	
Features	from	Word	
Feature	Vector	–
Window	Approach



• 𝑓LW can	feed	to	one	or	several	standard	linear	
neural	network	layers.

𝑓LW = 𝑊W𝑓LWX' + 𝑏W

• Use	HardTanh layer	as	the	activation	function.

HardTanh 𝑥 = `
	−1 if	𝑥 < −1
𝑥 if	−1 ≤ x ≤ 1
1 if	𝑥 > 1

	

• Padding	special	”PADDING”	word	𝑑Ghi/2	times	
at	the	beginning	 and	the	end.

2

Extract	High	Level	
Features	from	Word	
Feature	Vector	–
Window	Approach



Extract	High	Level	
Features	from	Word	
Feature	Vector	–
Sentence	Approach
• Window	approach	fails	with	SRL,	where	the	tag	
of	a	word	depends	on	a	verb	chosen	beforehand	
in	the	sentence	and	the	verb	falls	outside	 the	
window.

• In	this	case,	tagging	a	word	requires	the	
consideration	of	the	whole	sentence.

• Implementing	convolutional	 layer	for	sentence	
approach.	A	convolutional	 layer	can	be	seen	as	a	
generalization	of	a	window	approach.

2



• Formally,	using	previous	notation,	the	
convolutional	layer	can	be	noted	as

𝑓LW M
'
= 𝑊W 𝑓LWX' M

INOP + 𝑏W

• 𝑊W 	is	shared	across	all	windows	𝑡	in	the	
sequence.

• Convolutional	 layers	are	often	stacked	to	extract	
higher	 level	features,	so,	it	must	be	followed	a	
non-linearity	 layer.

• We	use	Max	Layer	here.

𝑓LW = max
M

𝑓LWX' h,M 1 ≤ 𝑖 ≤ 𝑛uvWX'

2

Extract	High	Level	
Features	from	Word	
Feature	Vector	–
Sentence	Approach



Everything	is	for	Tagging
• The	network	output	 layers	compute	scores	for	
all	the	possible	 tags	for	the	task	of	interest.

• In	the	window	approach,	 theses	tags	apply	to	
the	word	located	in	the	center	of	the	window.

• In	the	sentence	approach,	 these	tags	apply	to	
the	word	designated	by	additional	markers	in	
the	network	input.

• Use	IOBES	tagging	scheme	for	all	tasks,	in	order	
to	eliminate	additional	 source	of	variations	that	
different	 task	using	different	tagging	schemes.

3



𝜃 ⟼ y log 𝑝 𝑦 𝑥, 𝜃
|,} ∈~



Word-Level

Sentence-Level

Stochastic	Gradient

Benchmark	Results

Training

• The	log-likelihood	can	be	
expressed	as

log𝑝 𝑦 𝑥, 𝜃
= 𝑓L } − logy𝑒 �� �

h
• The	score	can	be	interpreted	as	a	
conditional	tag	probability	by	
apply	a	softmax operation

𝑝 𝑖 𝑥, 𝜃 =
𝑒 �� O

∑ 𝑒 �� �
�



Word-Level

Sentence-Level

Stochastic	Gradient

Benchmark	Results

• Finding	 the	best	path	of	tags	during	 training.

• Introducing	a	transition	score	 𝐴 h,� for	jumping	
from	𝑖 to	𝑗 tags	in	successive	words.

• The	new	training	parameter	is	
𝜃� = 𝜃 ∪ { 𝐴 h,�	∀𝑖, 𝑗}

• The	score	of	a	sentence	along	a	path	of	tags	is	given	
as

𝑠 𝑥 '
+, 𝑖 '+, 𝜃� =y 𝐴 h QR9, h Q + 𝑓L h Q,M	

+

M�'

• The	probability	 of	true	path
log 𝑝 𝑦 '

+ 𝑥 '
+, 𝜃�

= 𝑠 𝑥 '
+, 𝑦 '

+, 𝜃� − logadd
∀ � 9

?
𝑠 𝑥 '

+, 𝑗 '
+, 𝜃�

• After	mathematical	simplification,	we	find	
minimizes	the	sentence	score	can	find	best		tag	path

argmax
� 9
?

	𝑠 𝑥 '
+, 𝑗 '

+, 𝜃�

Training



Word-Level

Sentence-Level

Stochastic	Gradient

Benchmark	Results

𝜃 ← 𝜃 + 𝜆
𝜕 log 𝑝(𝑦|𝑥, 𝜃)

𝜕𝜃

Training



Word-Level

Sentence-Level

Stochastic	Gradient

Benchmark	Results

• Tasks:
1. POS
2. CHUNK
3. NER
4. SRL

• Methods:
1. Benchmark	Systems
2. Neural	Network	+	Word-Level	Log-Likelihood
3. Neural	Network	+	Sentence-Level	Log-

Likelihood

• Tricks:
1. All	networks	were	fed	with	two	raw	text	

features:	low	case	words	and	capital	letter	
feature.

2. Number	was	replaced	as	NUMBER,	words	
outside	 the	dictionary	 is	replaced	as	RARE.

Training



Word-Level

Sentence-Level

Stochastic	Gradient

Benchmark	Results

Training



Word-Level

Sentence-Level

Stochastic	Gradient

Benchmark	Results

Training



Improvement
Not	yet

Using	unlabeled	data



Improvements

𝜃 ⟼ y y max{0,1 − 𝑓L 𝑥 + 𝑓L(𝑥(𝓌))}
𝓌∈𝒟|∈𝒳

Pairwise	Criterion



1. Initially,	choose	𝑘 parameters	choices	from	
the	set	of	all	possible	parameters

2. Select	the	best	ones	using	the	validation	
set	error	rate.

3. In	next	iteration,	we	choose	another	set	of	
𝑘 parameters	from	the	possible	grid	of	
values	that	permute	slightly	the	most	
successful	candidates	from	previous	round.

4. Repeat	2	and	3.

Training	Language	Models

Benefits:	Many	of	parameter	choice	can	share	weights.

(breeding)

Improvements



Language	Model	LM1 Language	Model	LM2
Language	model	LM1	has	a	
window	size	𝑑Ghi = 11 and	a	
hidden	layer	with	𝑛uv' = 100
units.	The	embedding	layers	were	
dimensioned	as	50.	Model	LM1	
was	trained	on	our	first	English	
corpus	(Wikipedia)	using	
successive	dictionaries	composed	
of	the	5000,	10,000,	30,000,	
50,000	and	finally	100,	000	most	
common	WSJ	words.	

Based	on	the	word	embeddings
obtained	by	LM1,	trained	on	the	
Wikipedia+Reuterscorpus		for	
addition.

Improvements



Old

New

Neither	syntactic	
nor	semantic	relationship

The	syntactic		and	semantic	
are	clearly	related

Improvements



Improvements



Improvement
Not	yet

Using	Multi-Task	Learning



Joint	Decoding Joint	Training
1. Considering	additional	

probabilistic	dependency	paths	
between	the	models.

2. Therefor,	it	defines	an	implicit	
supermodel	that	describes	all	
the	tasks	in	the	same	
probabilistic	framework.

3. However,	separately	training		
cannot	make	dependency	
paths	directly	involve	
unobserved	variables.

1. Good	find	relation	for	the	case	
that	training	sets	for	the	
individual	tasks	contain	the	
same	patterns	with	different	
labels.

2. Sufficient	to	train	a	model	that	
that		computes	multiple	
outputs	form	each	pattern.

Improvements



Improvements



Improvements



Improvement
Not	yet

Using	Tricks



1. Suffix	Features: Strong	predictors	of	 the	syntactic	function	 in	western	languages.
2. Gazetteers: Large	(8,000)	category	dictionary	of	name	entity.
3. Cascading:	Tags	obtained	for	one	task	might	useful	 for	taking	decisions	in	others.
4. Ensembles:Use	multiple	 learning	algorithms	 to	obtain	better	performance.
5. Parsing: Provide	parse	tree	information	 as	additional	 input	 features	to	the	

system.
6. Word	Representations: Induced	word	embedding	 on	large	amount	of	unlabeled	

text	data.

Improvements



Final	Results

Improvements



Resources	Usage

Improvements



Conclusion



J Thanks	for	your	attention	J

Q	&	A


