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PCFGs [Collins, 2013]

G = (T ,N,S,R)

Re-writing Rules:
S → NP VP
NP → D N | N
VP → V
N → dog | man
D → a | the | an
V → sleeps | runs

from Treebanks:

θα→β = pML(α→ β)

= C(α→ β)
C(α)

Parse Tree:
S

NP

D

the

N

man

VP

V

sleeps

use CKY to maximize:

pG(t|θ) =
∏
r∈R

θfr (t)
r
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PCFGs [Collins, 2013]

G = (T ,N,S,R)

Re-writing Rules:
S → NP VP (1)
NP → D N (0.2)| N (0.8)
VP → V (1)
N → dog (0.3)| man (0.7)
D → a (0.3)| the (0.5)| an (0.3)
V → sleeps (0.6)| runs (0.4)
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Bayesian Inference for PCFGs

Goal: Given a corpus of string (terminals) w = (w1,w2, · · · ,wn),
generated by known CFGs G to infer the rule probability distribution θ
that best describe the corpus.

Maximum likelihood: Inside-Outside Algorithm (EM procedure)
[Lari and Young, 1990]

Bayesian inference:
p(θ|w) ∝ pG(w |θ)p(θ)

p(t,θ|w) ∝ p(w |t)p(t|θ)p(θ)
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Dirichlet Priors p(θ)

p(θ|w)︸ ︷︷ ︸
posterior

∝ pG(w |θ)︸ ︷︷ ︸
likelihood

p(θ)︸ ︷︷ ︸
prior
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posterior

∝ pG(t|θ)︸ ︷︷ ︸
likelihood
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Suppose A is a non-terminal at the left hand side, then all the productions
θA→β has a Dirichlet prior αA→β:

pDir (θ|α) =
∏

A∈N
pDir (θA|αA) ∝

∏
r∈R

θαr−1

They are conjugate to the distribution over trees, thus the posterior is also
a Dirichlet distribution:

pG(θ|t,α) ∝
∏
r∈R

θfr (t)+αr−1 = pDir (θ|f (t) + α)
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pDir (θ|α) =
∏

A∈N
pDir (θA|αA) ∝
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r∈R
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They are conjugate to the distribution over trees, thus the posterior is also
a Dirichlet distribution:

pG(θ|t,α) ∝
∏
r∈R

θfr (t)+αr−1 = pDir (θ|f (t) + α)

However, t is hidden, we can only observe terminal strings w!!
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Incredible Markov chain [rickjin, 2013]
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Incredible Markov chain [rickjin, 2013]

iter s1 s2 s3

π0 0.21 0.68 0.11
π1 0.25 0.55 0.19
π2 0.27 0.51 0.21
π3 0.28 0.50 0.23
π4 0.29 0.49 0.23
π5 0.29 0.49 0.23
π6 0.29 0.49 0.23
π7 0.29 0.49 0.23
. . . . . . . . . . . .
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Incredible Markov chain [rickjin, 2013]

iter s1 s2 s3

π0 0.75 0.15 0.1
π1 0.52 0.35 0.13
π2 0.41 0.42 0.17
π3 0.35 0.46 0.20
π4 0.32 0.48 0.21
π5 0.30 0.48 0.22
π6 0.29 0.49 0.23
π7 0.29 0.49 0.23
. . . . . . . . . . . .
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Incredible Markov chain [rickjin, 2013]

Sampling:

st+1 ∼ q(st → st+1)

Find a transition matrix such
that the stationary distribution
is the distribution we want, then
sample on it
The expectation of these
samples will be the estimation

E[θ] ≈ 1
`

∑̀
i=1

θi
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Incredible Markov chain [rickjin, 2013]

Detailed Balance Condition:

π(s)q(s → s ′) = π(s ′)q(s ′ → s)

1detailed balance condition is a sufficient but unnecessary condition
Guanyi Chen (University of Edinburgh) Bayesian Inference for PCFGs via MCMC March 18th, 2016 7 / 25



Just a test

>> p = [0.65 0.28 0.07; 0.15 0.67 0.18; 0.12 0.36 0.52];
>> a1 = [1, 0, 0];
>> a2 = [0.7, 0.2, 0.1];
>> b = a1 * pˆ100
b =

0.2865 0.48852 0.22498
>> b = a2 * pˆ100
b =

0.2865 0.48852 0.22498
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Gibbs Sampling 1

Detailed Balance Condition:

π(s)q(s → s ′) = π(s ′)q(s ′ → s)

Suppose we have two points A(x1, y1) and B(x1, y2):

p(x1, y1)p(y2|x1) = p(x1)p(y1|x1)p(y2|x1)

p(x1, y2)p(y1|x1) = p(x1)p(y2|x1)p(y1|x1)
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Gibbs Sampling 2

Sampling each component of the state conditioned on the current value of
all other variables
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Gibbs Sampler for (t,θ)

Update each component by resampling conditioned on values for other
components

p(t|θ,w ,α) =
n∏

i=1
p(ti |wi , θ)

p(θ|t,w ,α) = pDir (θ|f (t) + α)

Gibbs sampler is highly parallelizable
Given θ, trees are independent, thus t can be sampled in parallel
More efficiently sampling from p(t|w , θ): use dynamic programming,
i.e. inside and outside algorithm
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A Problem of Gibbs Sampler

Gibbs Sampler
For each sample of θ, the corpus w should be rephrasing

Directly sampling on the trees: marginalizing out θ

p(t|α) =
∫

∆
p(t|θ)p(θ|α)

Components of states are now the trees ti :

p(ti |t\i , α) = p(ti |t i , α)
p(ti |t\i , α)
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Metropolis-Hasting

Suppose a User-Specified Proposal Distribution Q(s ′; s):

π(s)Q(s ′; s) 6= π(s ′)Q(s; s ′)

where α is the acceptance rate:

α(s ′; s) = π(s ′)Q(s; s ′)

α(s; s ′) = π(s)Q(s ′; s)
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Metropolis-Hasting

Suppose a User-Specified Proposal Distribution Q(s ′; s):
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where α is the acceptance rate:

α(s ′; s) = π(s ′)Q(s; s ′)

α(s; s ′) = π(s)Q(s ′; s)

π(s)Q(s ′; s)× 0.5 = π(s ′)Q(s; s ′)× 1
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Metropolis-Hasting

Suppose a User-Specified Proposal Distribution Q(s ′; s):

π(s)Q(s ′; s)α(s ′; s) = π(s ′)Q(s; s ′)α(s; s ′)

where α is the acceptance rate:

α(s ′; s) = π(s ′)Q(s; s ′)

α(s; s ′) = π(s)Q(s ′; s)

α(s ′; s) = min
{

1, π(s ′)Q(s; s ′)
π(s)Q(s ′; s)

}
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A Hasting Sampler for p(t|w , α)

Use the posterior p(t|w , θ̂) as the proposal distribution

Randomly choose index i of tree to re-sample
Compute the PCFG Probability to be used in proposal distribution

θ̂A→β = E[θA→β|t\i , α] =
fA→β(t\i ) + αA→β∑

A→β′∈RA
fA→β′(t\i ) + αA→β′

Sample a proposal tree: t ′i ∼ p(ti |wi , θ̂)
Compute the acceptance probability:

A(t ′i , ti ) = min
{

1,
p(t ′i |t\i , α)p(ti |wi , θ̂)
p(ti |t\i , α)p(t ′i |wi , θ̂)

}

Choose a random number x ∈ uniform[0, 1], to determine whether
accept or not
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Overview

1 Introduction
Probabilistic context-free grammars (PCFGs)
Dirichlet Priors
Markov chain Monte Carlo

2 Samplers
A Gibbs sampler
A Hastings sampler

3 Application and Result
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Inferring Sparse Grammar

Performs poorly on inferring the PCFG as Inside-outside algorithm:
Simple PCFGs are not accurate models of English syntactic structure
Ignore a wide variety of lexical and syntactic dependencies in natural
language
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Unsupervised Morphological Analysis of Sesotho

Sesotho is a morphology rich language
Word → V
Word → V M
Word → SM V M
Word → SM T V M
Word → SM T OM V M

expanding the pre-terminals to each of the contiguous substrings of
any verb in corpus, producing a grammar with 81,755 productions in
all
Tested on maximum likelihood (IO), MAP (IO) and a Hasting
Sampler
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Results

Maximum Likelihood learn a ”Saturated” grammar: every word has
its own production and θWord→V = 1

Hasting Sampler: non-trivial structure emerges α < 0.01
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Problem of MAP and Further work

EM Re-estimate θ in M-step

θ(t+1)
r ∝ E[fr |w , θ(t)]

Bayesian estimation for θ:

θ(t+1)
r ∝ max(0,E[fr |w , θ(t)] + αr − 1)

θ
(t+1)
r = 0, then some input string failed to parse

Variational Bayes may solve this [Kurihara and Sato, 2006]
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Summary

Two samplers for inferring PCFGs

Unsupervised morphological analysis
A Bayesian approach is more flexible than maximum likelihood
Provide essential building blocks for more complex models
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Supplementary Materials

1 Michael Collins’ Note on PCFGs:
http://www.cs.columbia.edu/˜mcollins/courses/nlp2011/
notes/pcfgs.pdf

2 Lecture slides of MLPR for MCMC:
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2015/
slides/13_mcmc.pdf

3 Tutorial about MCMC in NIPS 2015:
http://research.microsoft.com/apps/video/?id=259575
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