Bayesian Inference for PCFGs via Markov Chain Monte Carlo Mark Johnson, Thomas L.Griffiths and Sharon Goldwater

Guanyi Chen

University of Edinburgh

March 18th, 2016

Introduction

- Probabilistic context-free grammars (PCFGs)
- Dirichlet Priors
- Markov chain Monte Carlo

2 Samplers

- A Gibbs sampler
- A Hastings sampler

3 Application and Result

Introduction

- Probabilistic context-free grammars (PCFGs)
- Dirichlet Priors
- Markov chain Monte Carlo

2 Samplers

- A Gibbs sampler
- A Hastings sampler

3 Application and Result

G = (T, N, S, R)

Guanyi Chen (University of Edinburgh) Bayesian Inference for PCFGs via MCMC

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$G = (T, N, S, R)$$

Re-writing Rules:

- $\mathsf{S}\to\mathsf{NP}\;\mathsf{VP}$
- $\mathsf{NP} \to \mathsf{D} \mathsf{N} \mid \mathsf{N}$
- $\mathsf{VP}\to\mathsf{V}$
- $\mathsf{N} \to \mathsf{dog} \mid \mathsf{man}$
- $\mathsf{D} \to \mathsf{a} \mid \mathsf{the} \mid \mathsf{an}$
- $V \to sleeps \mid runs$

 $\begin{array}{l} \mbox{Re-writing Rules:} \\ S \rightarrow NP \ VP \\ NP \rightarrow D \ N \ | \ N \\ VP \rightarrow V \\ N \rightarrow dog \ | \ man \\ D \rightarrow a \ | \ the \ | \ an \\ V \rightarrow sleeps \ | \ runs \end{array}$

from Treebanks:

$$egin{aligned} heta_{lpha o eta} &= p_{ML}(lpha o eta) \ &= rac{\mathcal{C}(lpha o eta)}{\mathcal{C}(lpha)} \end{aligned}$$

March 18th, 2016 4 / 25

$$G = (T, N, S, R)$$

Re-writing Rules: $S \rightarrow NP VP (1)$ $NP \rightarrow D N (0.2)| N (0.8)$ $VP \rightarrow V (1)$ $N \rightarrow dog (0.3)| man (0.7)$ $D \rightarrow a (0.3)| the (0.5)| an (0.3)$ $V \rightarrow sleeps (0.6)| runs (0.4)$

from Treebanks:

$$egin{aligned} heta_{lpha o eta} &= p_{ML}(lpha o eta) \ &= rac{\mathcal{C}(lpha o eta)}{\mathcal{C}(lpha)} \end{aligned}$$

$$G = (T, N, S, R)$$

Parse Tree:

Re-writing Rules: $S \rightarrow NP VP (1)$ $NP \rightarrow D N (0.2)| N (0.8)$ $VP \rightarrow V (1)$ $N \rightarrow dog (0.3)| man (0.7)$ $D \rightarrow a (0.3)| the (0.5)| an (0.3)$ $V \rightarrow sleeps (0.6)| runs (0.4)$

S NP VP D N V | | | the man sleeps

from Treebanks:

$$egin{aligned} & heta_{lpha o eta} = p_{ML}(lpha o eta) \ & = rac{\mathcal{C}(lpha o eta)}{\mathcal{C}(lpha)} \end{aligned}$$

use CKY to maximize:

$$p_G(t| heta) = \prod_{r \in R} heta_r^{f_r(t)}$$

Maximum likelihood: Inside-Outside Algorithm (EM procedure) [Lari and Young, 1990]

Maximum likelihood: Inside-Outside Algorithm (EM procedure) [Lari and Young, 1990]

Bayesian inference:

 $p(\theta|oldsymbol{w}) \propto p_G(oldsymbol{w}|oldsymbol{ heta}) p(oldsymbol{ heta})$

Maximum likelihood: Inside-Outside Algorithm (EM procedure) [Lari and Young, 1990]

Bayesian inference:

 $p(m{ heta}|m{w}) \propto p_G(m{w}|m{ heta})p(m{ heta})$ $p(m{t},m{ heta}|m{w}) \propto p(m{w}|m{t})p(m{t}|m{ heta})p(m{ heta})$

 $p(\theta|\mathbf{w}) \propto \underline{p_G(\mathbf{w}|\theta)} p(\theta)$ likelihood prior posterior

3 N 3

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $p(\theta|\mathbf{t}) \propto p_G(\mathbf{t}|\theta) p(\theta)$ posterior likelihood prior

March 18th, 2016 6 / 25

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Suppose A is a non-terminal at the left hand side, then all the productions $\theta_{A\to\beta}$ has a Dirichlet prior $\alpha_{A\to\beta}$:

$$p_{Dir}(\boldsymbol{\theta}|\boldsymbol{\alpha}) = \prod_{A \in N} p_{Dir}(\theta_A|\alpha_A) \propto \prod_{r \in R} \theta^{\alpha_r - 1}$$

Suppose A is a non-terminal at the left hand side, then all the productions $\theta_{A\to\beta}$ has a Dirichlet prior $\alpha_{A\to\beta}$:

$$p_{Dir}(\boldsymbol{\theta}|\boldsymbol{lpha}) = \prod_{A \in N} p_{Dir}(\theta_A|\alpha_A) \propto \prod_{r \in R} \theta^{\alpha_r - 1}$$

They are conjugate to the distribution over trees, thus the posterior is also a Dirichlet distribution:

$$p_{G}(\boldsymbol{ heta}|\boldsymbol{t}, oldsymbol{lpha}) \propto \prod_{r \in R} heta^{f_{r}(\boldsymbol{t}) + lpha_{r} - 1} = p_{Dir}(oldsymbol{ heta}|\boldsymbol{f}(\boldsymbol{t}) + oldsymbol{lpha})$$

Suppose A is a non-terminal at the left hand side, then all the productions $\theta_{A\to\beta}$ has a Dirichlet prior $\alpha_{A\to\beta}$:

$$p_{Dir}(\boldsymbol{ heta}|\boldsymbol{lpha}) = \prod_{A \in N} p_{Dir}(\theta_A|lpha_A) \propto \prod_{r \in R} heta^{lpha_r - 1}$$

They are conjugate to the distribution over trees, thus the posterior is also a Dirichlet distribution:

$$p_{G}(oldsymbol{ heta}|oldsymbol{t},oldsymbol{lpha}) \propto \prod_{r\in R} heta^{f_r(oldsymbol{t})+lpha_r-1} = p_{Dir}(oldsymbol{ heta}|oldsymbol{f}(oldsymbol{t})+lpha)$$

However, t is hidden, we can only observe terminal strings w!!

Guanyi Chen (University of Edinburgh) Bayesian Inference for PCFGs via MCMC

iter	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3
π_0	0.21	0.68	0.11
π_1	0.25	0.55	0.19
π_2	0.27	0.51	0.21
π_3	0.28	0.50	0.23
π_4	0.29	0.49	0.23
π_5	0.29	0.49	0.23
π_6	0.29	0.49	0.23
π_7	0.29	0.49	0.23

iter	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3
π_0	0.75	0.15	0.1
π_1	0.52	0.35	0.13
π_2	0.41	0.42	0.17
π_3	0.35	0.46	0.20
π_4	0.32	0.48	0.21
π_5	0.30	0.48	0.22
π_6	0.29	0.49	0.23
π_7	0.29	0.49	0.23

• Sampling:

$$s_{t+1} \sim q(s_t
ightarrow s_{t+1})$$

- Find a transition matrix such that the stationary distribution is the distribution we want, then sample on it
- The expectation of these samples will be the estimation

$$\mathbb{E}[heta] pprox rac{1}{\ell} \sum_{i=1}^{\ell} heta_i$$

• Sampling:

$$s_{t+1} \sim q(s_t
ightarrow s_{t+1})$$

- Find a transition matrix such that the stationary distribution is the distribution we want, then sample on it
- The expectation of these samples will be the estimation

$$\mathbb{E}[heta] pprox rac{1}{\ell} \sum_{i=1}^{\ell} heta_i$$

March 18th, 2016 7 / 25

Detailed Balance Condition:

$$\pi(s)q(s
ightarrow s')=\pi(s')q(s'
ightarrow s)$$

¹detailed balance condition is a sufficient but unnecessary condition

3

Introduction

- Probabilistic context-free grammars (PCFGs)
- Dirichlet Priors
- Markov chain Monte Carlo

2 Samplers

- A Gibbs sampler
- A Hastings sampler

3 Application and Result

$$\pi(s)q(s
ightarrow s')=\pi(s')q(s'
ightarrow s)$$

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

$$\pi(s)q(s
ightarrow s')=\pi(s')q(s'
ightarrow s)$$

Suppose we have two points $A(x_1, y_1)$ and $B(x_1, y_2)$:

$$\pi(s)q(s
ightarrow s')=\pi(s')q(s'
ightarrow s)$$

Suppose we have two points $A(x_1, y_1)$ and $B(x_1, y_2)$:

$$p(x_1, y_1)p(y_2|x_1) = p(x_1)p(y_1|x_1)p(y_2|x_1)$$
$$p(x_1, y_2)p(y_1|x_1) = p(x_1)p(y_2|x_1)p(y_1|x_1)$$

Image: A matrix and a matrix

$$\pi(s)q(s
ightarrow s')=\pi(s')q(s'
ightarrow s)$$

Suppose we have two points $A(x_1, y_1)$ and $B(x_1, y_2)$:

$$p(x_1, y_1)p(y_2|x_1) = p(x_1)p(y_1|x_1)p(y_2|x_1)$$
$$p(x_1, y_2)p(y_1|x_1) = p(x_1)p(y_2|x_1)p(y_1|x_1)$$

$$p(x_1, y_1)p(y_2|x_1) = p(x_1, y_2)p(y_1|x_1)$$

Image: A matrix and a matrix

$$\pi(s)q(s
ightarrow s')=\pi(s')q(s'
ightarrow s)$$

Suppose we have two points $A(x_1, y_1)$ and $B(x_1, y_2)$:

$$p(x_1, y_1)p(y_2|x_1) = p(x_1)p(y_1|x_1)p(y_2|x_1)$$
$$p(x_1, y_2)p(y_1|x_1) = p(x_1)p(y_2|x_1)p(y_1|x_1)$$

$$\pi(A)q(y_2|x_1) = \pi(B)q(y_1|x_1)$$

Image: A matrix and a matrix

$$\pi(s)q(s
ightarrow s')=\pi(s')q(s'
ightarrow s)$$

Suppose we have two points $A(x_1, y_1)$ and $B(x_1, y_2)$:

$$p(x_1, y_1)p(y_2|x_1) = p(x_1)p(y_1|x_1)p(y_2|x_1)$$
$$p(x_1, y_2)p(y_1|x_1) = p(x_1)p(y_2|x_1)p(y_1|x_1)$$

$$\pi(A)q(y_2|x_1) = \pi(B)q(y_1|x_1)$$

Image: A matrix and a matrix

Gibbs Sampling 2

Sampling each component of the state conditioned on the current value of all other variables

Gibbs Sampling 2

Sampling each component of the state conditioned on the current value of all other variables

Update each component by resampling conditioned on values for other components
$$egin{aligned} p(m{t}|m{ heta},m{w},m{lpha}) &= \prod_{i=1}^n p(t_i|w_i,m{ heta}) \ p(m{ heta}|m{t},m{w},m{lpha}) &= p_{Dir}(m{ heta}|m{f}(m{t})+m{lpha}) \end{aligned}$$

$$egin{aligned} p(m{t}|m{ heta},m{w},m{lpha}) &= \prod_{i=1}^n p(t_i|w_i,m{ heta}) \ p(m{ heta}|m{t},m{w},m{lpha}) &= p_{Dir}(m{ heta}|m{f}(m{t})+m{lpha}) \end{aligned}$$

• Gibbs sampler is highly parallelizable

$$egin{aligned} p(m{t}|m{ heta},m{w},m{lpha}) &= \prod_{i=1}^n p(t_i|w_i,m{ heta}) \ p(m{ heta}|m{t},m{w},m{lpha}) &= p_{Dir}(m{ heta}|m{f}(m{t})+m{lpha}) \end{aligned}$$

- Gibbs sampler is highly parallelizable
- Given θ , trees are independent, thus t can be sampled in parallel

$$egin{aligned} p(m{t}|m{ heta},m{w},m{lpha}) &= \prod_{i=1}^n p(t_i|w_i,m{ heta}) \ p(m{ heta}|m{t},m{w},m{lpha}) &= p_{Dir}(m{ heta}|m{f}(m{t})+m{lpha}) \end{aligned}$$

- Gibbs sampler is highly parallelizable
- Given θ , trees are independent, thus t can be sampled in parallel
- More efficiently sampling from p(t|w, θ): use dynamic programming, i.e. inside and outside algorithm

Gibbs Sampler

For each sample of θ , the corpus w should be rephrasing

Gibbs Sampler

For each sample of θ , the corpus w should be rephrasing

Directly sampling on the trees:

Gibbs Sampler

For each sample of θ , the corpus w should be rephrasing

Directly sampling on the trees: marginalizing out heta

$$p(t|lpha) = \int_{\Delta} p(t| heta) p(heta|lpha)$$

Gibbs Sampler

For each sample of θ , the corpus w should be rephrasing

Directly sampling on the trees: marginalizing out θ

$$p(t|\alpha) = \int_{\Delta} p(t|\theta) p(\theta|\alpha)$$

Components of states are now the trees t_i :

$$p(t_i|\boldsymbol{t}_{\setminus i},\alpha) = \frac{p(t_i|\boldsymbol{t}_i,\alpha)}{p(t_i|\boldsymbol{t}_{\setminus i},\alpha)}$$

Gibbs Sampler

For each sample of θ , the corpus \boldsymbol{w} should be rephrasing

Directly sampling on the trees: marginalizing out heta

$$p(t|\alpha) = \int_{\Delta} p(t|\theta) p(\theta|\alpha)$$

Components of states are now the trees t_i :

$$p(t_i|\boldsymbol{t}_{i},\alpha) = \frac{p(t_i|\boldsymbol{t}_{i},\alpha)}{p(t_i|\boldsymbol{t}_{i},\alpha)}$$

New Gibbs Sampler:

$$p(t_i|w_i, \boldsymbol{t}_{i}, \alpha) = \frac{p(w_i|t_i)p(t_i|\boldsymbol{t}_{i}, \alpha)}{p(w_i|\boldsymbol{t}_{i}, \alpha)}$$

Gibbs Sampler

For each sample of θ , the corpus w should be rephrasing

Directly sampling on the trees: marginalizing out heta

$$p(t|\alpha) = \int_{\Delta} p(t|\theta) p(\theta|\alpha)$$

Components of states are now the trees t_i :

$$p(t_i|\boldsymbol{t}_{i},\alpha) = \frac{p(t_i|\boldsymbol{t}_{i},\alpha)}{p(t_i|\boldsymbol{t}_{i},\alpha)}$$

New Gibbs Sampler:

$$p(t_i|w_i, \boldsymbol{t}_{\setminus i}, \alpha) = \frac{p(w_i|t_i)p(t_i|\boldsymbol{t}_{\setminus i}, \alpha)}{p(w_i|\boldsymbol{t}_{\setminus i}, \alpha)}$$

 $\pi(s)Q(s';s) \neq \pi(s')Q(s;s')$

$$\pi(s)Q(s';s)\alpha(s';s) = \pi(s')Q(s;s')\alpha(s;s')$$

< A

$$\pi(s)Q(s';s)\alpha(s';s) = \pi(s')Q(s;s')\alpha(s;s')$$

$$\alpha(s';s) = \pi(s')Q(s;s')$$
$$\alpha(s;s') = \pi(s)Q(s';s)$$

$$\pi(s)Q(s';s)\alpha(s';s) = \pi(s')Q(s;s')\alpha(s;s')$$

$$lpha(s';s) = \pi(s')Q(s;s')$$

 $lpha(s;s') = \pi(s)Q(s';s)$

$$\pi(s)Q(s';s) imes 0.1 = \pi(s')Q(s;s') imes 0.2$$

$$\pi(s)Q(s';s)\alpha(s';s) = \pi(s')Q(s;s')\alpha(s;s')$$

$$\alpha(s';s) = \pi(s')Q(s;s')$$
$$\alpha(s;s') = \pi(s)Q(s';s)$$

$$\pi(s)Q(s';s) imes 0.5 = \pi(s')Q(s;s') imes 1$$

$$\pi(s)Q(s';s)\alpha(s';s) = \pi(s')Q(s;s')\alpha(s;s')$$

$$\alpha(s';s) = \pi(s')Q(s;s')$$
$$\alpha(s;s') = \pi(s)Q(s';s)$$
$$\alpha(s';s) = \min\left\{1, \frac{\pi(s')Q(s;s')}{\pi(s)Q(s';s)}\right\}$$

Use the posterior $p(\boldsymbol{t}|\boldsymbol{w},\hat{ heta})$ as the proposal distribution

Use the posterior $p(\pmb{t}|\pmb{w}, \hat{\theta})$ as the proposal distribution

• Randomly choose index i of tree to re-sample

Use the posterior $p(\boldsymbol{t}|\boldsymbol{w},\hat{ heta})$ as the proposal distribution

- Randomly choose index i of tree to re-sample
- Compute the PCFG Probability to be used in proposal distribution

$$\hat{\theta}_{A \to \beta} = \mathbb{E}[\theta_{A \to \beta} | \boldsymbol{t}_{\backslash i}, \alpha] = \frac{f_{A \to \beta}(\boldsymbol{t}_{\backslash i}) + \alpha_{A \to \beta}}{\sum_{A \to \beta' \in R_A} f_{A \to \beta'}(\boldsymbol{t}_{\backslash i}) + \alpha_{A \to \beta'}}$$

Use the posterior $p(\boldsymbol{t}|\boldsymbol{w}, \hat{\theta})$ as the proposal distribution

- Randomly choose index i of tree to re-sample
- Compute the PCFG Probability to be used in proposal distribution

$$\hat{\theta}_{A \to \beta} = \mathbb{E}[\theta_{A \to \beta} | \boldsymbol{t}_{i}, \alpha] = \frac{f_{A \to \beta}(\boldsymbol{t}_{i}) + \alpha_{A \to \beta}}{\sum_{A \to \beta' \in R_A} f_{A \to \beta'}(\boldsymbol{t}_{i}) + \alpha_{A \to \beta'}}$$

• Sample a proposal tree: $t_i' \sim p(t_i | w_i, \hat{ heta})$

Use the posterior $p(\boldsymbol{t}|\boldsymbol{w}, \hat{\theta})$ as the proposal distribution

- Randomly choose index i of tree to re-sample
- Compute the PCFG Probability to be used in proposal distribution

$$\hat{\theta}_{A \to \beta} = \mathbb{E}[\theta_{A \to \beta} | \boldsymbol{t}_{\backslash i}, \alpha] = \frac{f_{A \to \beta}(\boldsymbol{t}_{\backslash i}) + \alpha_{A \to \beta}}{\sum_{A \to \beta' \in R_A} f_{A \to \beta'}(\boldsymbol{t}_{\backslash i}) + \alpha_{A \to \beta'}}$$

- Sample a proposal tree: $t_i' \sim p(t_i | w_i, \hat{ heta})$
- Compute the acceptance probability:

$$A(t'_i, t_i) = \min\left\{1, \frac{p(t'_i | \boldsymbol{t}_{i}, \alpha) p(t_i | w_i, \hat{\theta})}{p(t_i | \boldsymbol{t}_{i}, \alpha) p(t'_i | w_i, \hat{\theta})}\right\}$$

Use the posterior $p(\boldsymbol{t}|\boldsymbol{w}, \hat{\theta})$ as the proposal distribution

- Randomly choose index i of tree to re-sample
- Compute the PCFG Probability to be used in proposal distribution

$$\hat{\theta}_{A \to \beta} = \mathbb{E}[\theta_{A \to \beta} | \boldsymbol{t}_{\backslash i}, \alpha] = \frac{f_{A \to \beta}(\boldsymbol{t}_{\backslash i}) + \alpha_{A \to \beta}}{\sum_{A \to \beta' \in R_A} f_{A \to \beta'}(\boldsymbol{t}_{\backslash i}) + \alpha_{A \to \beta'}}$$

- Sample a proposal tree: $t_i' \sim p(t_i | w_i, \hat{ heta})$
- Compute the acceptance probability:

$$A(t'_i, t_i) = \min\left\{1, \frac{p(t'_i | \boldsymbol{t}_{i}, \alpha) p(t_i | w_i, \hat{\theta})}{p(t_i | \boldsymbol{t}_{i}, \alpha) p(t'_i | w_i, \hat{\theta})}\right\}$$

 Choose a random number x ∈ uniform[0, 1], to determine whether accept or not

1 Introduction

- Probabilistic context-free grammars (PCFGs)
- Dirichlet Priors
- Markov chain Monte Carlo

2 Samplers

- A Gibbs sampler
- A Hastings sampler

3 Application and Result

Inferring Sparse Grammar

Performs poorly on inferring the PCFG as Inside-outside algorithm:

- Simple PCFGs are not accurate models of English syntactic structure
- Ignore a wide variety of lexical and syntactic dependencies in natural language

Inferring Sparse Grammar

Performs poorly on inferring the PCFG as Inside-outside algorithm:

- Simple PCFGs are not accurate models of English syntactic structure
- Ignore a wide variety of lexical and syntactic dependencies in natural language

Unsupervised Morphological Analysis of Sesotho

• Sesotho is a morphology rich language

 $\begin{array}{l} \mathsf{Word} \rightarrow \mathsf{V} \\ \mathsf{Word} \rightarrow \mathsf{V} \ \mathsf{M} \\ \mathsf{Word} \rightarrow \mathsf{SM} \ \mathsf{V} \ \mathsf{M} \\ \mathsf{Word} \rightarrow \mathsf{SM} \ \mathsf{T} \ \mathsf{V} \ \mathsf{M} \\ \mathsf{Word} \rightarrow \mathsf{SM} \ \mathsf{T} \ \mathsf{OM} \ \mathsf{V} \ \mathsf{M} \end{array}$

Unsupervised Morphological Analysis of Sesotho

• Sesotho is a morphology rich language

- $\begin{array}{l} \mathsf{Word} \rightarrow \mathsf{V} \\ \mathsf{Word} \rightarrow \mathsf{V} \ \mathsf{M} \\ \mathsf{Word} \rightarrow \mathsf{SM} \ \mathsf{V} \ \mathsf{M} \\ \mathsf{Word} \rightarrow \mathsf{SM} \ \mathsf{T} \ \mathsf{V} \ \mathsf{M} \\ \mathsf{Word} \rightarrow \mathsf{SM} \ \mathsf{T} \ \mathsf{OM} \ \mathsf{V} \ \mathsf{M} \end{array}$
- expanding the pre-terminals to each of the contiguous substrings of any verb in corpus, producing a grammar with 81,755 productions in all

Unsupervised Morphological Analysis of Sesotho

• Sesotho is a morphology rich language

- $\begin{array}{l} \mathsf{Word} \rightarrow \mathsf{V} \\ \mathsf{Word} \rightarrow \mathsf{V} \ \mathsf{M} \\ \mathsf{Word} \rightarrow \mathsf{SM} \ \mathsf{V} \ \mathsf{M} \\ \mathsf{Word} \rightarrow \mathsf{SM} \ \mathsf{T} \ \mathsf{V} \ \mathsf{M} \\ \mathsf{Word} \rightarrow \mathsf{SM} \ \mathsf{T} \ \mathsf{OM} \ \mathsf{V} \ \mathsf{M} \end{array}$
- expanding the pre-terminals to each of the contiguous substrings of any verb in corpus, producing a grammar with 81,755 productions in all
- Tested on maximum likelihood (IO), MAP (IO) and a Hasting Sampler

• Maximum Likelihood learn a "Saturated" grammar: every word has its own production and $\theta_{\rm Word\to V}=1$

э

- Maximum Likelihood learn a "Saturated" grammar: every word has its own production and $\theta_{\rm Word\to V}=1$
- Hasting Sampler: non-trivial structure emerges lpha < 0.01

 $heta_r^{(t+1)} \propto \mathbb{E}[f_r | \boldsymbol{w}, \theta^{(t)}]$

э

$$heta_r^{(t+1)} \propto \mathbb{E}[f_r | \boldsymbol{w}, \theta^{(t)}]$$

• Bayesian estimation for θ :

$$heta_r^{(t+1)} \propto \max(0, \mathbb{E}[f_r | oldsymbol{w}, heta^{(t)}] + lpha_r - 1)$$

$$heta_r^{(t+1)} \propto \mathbb{E}[f_r | \boldsymbol{w}, \theta^{(t)}]$$

• Bayesian estimation for θ :

$$heta_r^{(t+1)} \propto \max(0, \mathbb{E}[f_r | oldsymbol{w}, heta^{(t)}] + lpha_r - 1)$$

• $\theta_r^{(t+1)} = 0$, then some input string failed to parse

$$\theta_r^{(t+1)} \propto \mathbb{E}[f_r | \boldsymbol{w}, \theta^{(t)}]$$

• Bayesian estimation for θ :

$$heta_r^{(t+1)} \propto \max(0, \mathbb{E}[f_r | oldsymbol{w}, heta^{(t)}] + lpha_r - 1)$$

- $\theta_r^{(t+1)} = 0$, then some input string failed to parse
- Variational Bayes may solve this [Kurihara and Sato, 2006]

• Two samplers for inferring PCFGs

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

- Two samplers for inferring PCFGs
- Unsupervised morphological analysis

< 47 ▶

э
- Two samplers for inferring PCFGs
- Unsupervised morphological analysis
- A Bayesian approach is more flexible than maximum likelihood

- Two samplers for inferring PCFGs
- Unsupervised morphological analysis
- A Bayesian approach is more flexible than maximum likelihood
- Provide essential building blocks for more complex models

3

イロト イヨト イヨト イヨト

- Michael Collins' Note on PCFGs: http://www.cs.columbia.edu/~mcollins/courses/nlp2011/ notes/pcfgs.pdf
- Lecture slides of MLPR for MCMC: http://www.inf.ed.ac.uk/teaching/courses/mlpr/2015/ slides/13_mcmc.pdf
- Tutorial about MCMC in NIPS 2015: http://research.microsoft.com/apps/video/?id=259575

Collins, M. (2013).

Probabilistic context-free grammars (pcfgs).

- Johnson, M., Griffiths, T. L., and Goldwater, S. (2007). Bayesian inference for pcfgs via markov chain monte carlo. In *HLT-NAACL*, pages 139–146.
- Kurihara, K. and Sato, T. (2006).
 Variational bayesian grammar induction for natural language.
 In *Grammatical Inference: Algorithms and Applications*, pages 84–96.
 Springer.
- 🔋 Lari, K. and Young, S. J. (1990).

The estimation of stochastic context-free grammars using the inside-outside algorithm.

Computer speech & language, 4(1):35–56.

Math gossip of Ida.

Image: A matrix and a matrix

æ