Georgia Maniati University of Edinburgh March 8, 2016

Unsupervised Induction of Semantic Roles

Joel Lang and Mirella Lapata (2010)

Overview

Introduction

Semantic Roles The Semantic Role Labeling Task (SRL)

Problem Formulation

Role induction as a clustering problem Standard linking & alternations

Model

Extension of logistic classifier with latent variables

Evaluation

Summary

Introduction

The Semantic Role Labeling task

Semantic roles: labels that capture aspects of the semantics of the relationship between

predicate and argument while abstracting over surface syntactic configurations

- > Predicate Argument
- > Agent Patient

[Michael]_{Agent} eats [a sandwich]_{Patient}.

[A sandwich]_{Patient} is eaten by [Michael]_{Agent}.

- Common Role Annotation Frameworks:
 - FrameNet: frame-specific roles
 - PropBank: Proto-roles

Introduction

Contingency table between *syntactic function* and *semantic role* for two core roles and two adjunct roles (counts from CoNLL 2008).

- > 84.5% of A0 (Proto-Agent) roles are subjects
- > 58.4% of A1 (Proto-Patient) roles are objects

★ Linking theory assumption- tendency of semantic role

be mapped onto single syntactic function

PropBank

	A0	A1	TMP	MNR
SBJ	54514	19684	15	7
OBJ	D 3359	51730	93	54
ADV	162	3506	976	2308
TMP	5	60	15167	22
PMOD	2466	4860	142	62
OPRD	37	5554	1	36
LOC	17	145	43	157
DIR	0	178	15	6
MNR	5	48	13	3312
PRP	9	50	11	6
LGS	2168	36	2	2
PRD	413	830	31	38
NMOD	422	388	25	59
EXT	0	20	2	12
DEP	18	150	25	65
SUB	3	84	4	2
CONJ	198	331	22	8
ROOT	62	147	84	2
	64517	88616	16803	6404

Introductio

The Semantic Role Labeling task

Goal: automatically classify the arguments of a predicate with semantic roles

Full SRL system:

- > predicate identification
- > argument identification
- ➤ argument classification

Challenge: computational treatment of syntactic alternations

Introduction

Supervised SRL

Supervised approaches:

- > parse the training corpus
- match labeled semantic roles to syntactic functions
- > extract features from the parse tree
- \succ train a probabilistic model on the features

Hand-labeled data are domain & language specific and expensive to produce .

Solution: mechanism for inducing the semantic roles from unlabeled data

Problem Formulation

Argument classification as a **clustering problem**:

- > A set of clusters for each predicate (predicate specific PropBank roles)
- > Each cluster corresponds to a semantic role
- > Ideally one-to-one mapping between each cluster and each semantic role

Reformulated task :

> assign the arguments of a specific predicate to one of the clusters associated with it

Problem Formulation How to deal with syntactic alternations?

Each predicate is associated with a **standard linking**: the most frequent mapping of the *syntactic function* of its arguments to *semantic roles*. [Michael]₄₀ eats [a sandwich]₄₁.

- standard linking for predicate 'to eat':
 - Subject-A0
 - Object-A1

Canonical function: the syntactic function an argument would have had, if the standard linking had been used.

[A sandwich]_{Patient} is eaten by [Michael]_{Agent}.

canonical function for argument 'A sandwich': Object

Problem Formulation

Sub-problems

- 1) Detection of non-standard linkings
- 2) Canonicalization: determine canonical function
- 3) Clustering according to canonical function

Sub-problems 1 & 2 rely on the distribution p(F) over the possible canonical functions F of an argument.

3) For each predicate we have K clusters:

Order syntactic functions by occurrence frequency.

- For each of the K-1 most frequent functions allocate a separate cluster.
- Assign all remaining functions to the Kth cluster.

Model *p(F)* ?

Extension of logistic classifier with latent variables to avoid overfitting

Goal: learn the canonical function of arguments for each predicate

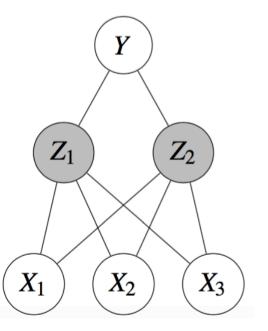
Training data: parser output - most observed syntactic functions will correspond to canonical functions

Features: at or below node representing argument

head in parse tree

The logistic classifier with latent variables illustrated as a graphical model in unrolled form for M=2 and N=3.

How do we estimate



 X_1, X_2, X_3 : observed features Z_1, Z_2 : binary latent variables Y: observed target

Model

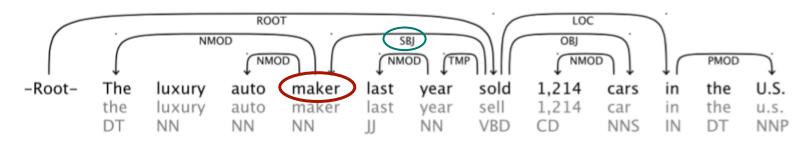
$$p(y,z|x,\theta) = \frac{1}{P(x,\theta)} \exp\left(\sum_{k} \theta_k \phi_k(x,y,z)\right)$$

How do we estimate

- probability distribution over the target variable Y and the latent variables Z, conditional on the input variables X
- > each of the feature functions φ is associated with a parameter θ

> For a training set of inputs c and corresponding targets d, we obtain the maximum-likelihood parameters by finding the θ maximizing $l(\theta)$

Model



Dependency graph of a sample sentence from the corpus

Features extracted:

predicate lemma, argument lemma, argument POS, preposition involved (if any), lemma of left-most/right-most child of the argument, POS of left-most/right-most child of argument, a key formed by concatenating all syntactic functions of the argument's children

- The features for the argument maker are: [sell, maker, NN, –, the, auto, DT, NN, NMOD+NMOD]
- > The target for this instance (and observed syntactic function) is SBJ.

Evaluation

➤ created gold standard role labeled argument instances

> 10 clusters for each predicate

Measures

≻cluster purity (PU)

$$PU = \frac{1}{K} \sum_{i} \max_{j} |c_i \cap g_j|$$

Let *K* denote the number of clusters, c_i the set of instances in the *i*-th cluster and g_j the set of instances having the *j*-th gold standard semantic role label.

Evaluation

- > cluster accuracy as a sures
- ≻ cluster precision (CP)

≻cluster recall (CR)

$$CA = \frac{TP + TN}{TP + FP + TN + FN}$$

$$CP = rac{TP}{TP + FP}$$
 $CR = rac{TP}{TP + FN}$

TP : number of *pairs of instances* which have the same role and are in the same cluster,

TN : number of pairs of instances which have different roles and are in different clusters

FP : number of pairs of instances with different roles in the same cluster

FN : number of pairs of instances with the same role in different clusters

Evaluation

Performance

> better than the baseline syntactic function model

> successful in detecting alternate linkings

➤ higher cluster purity score compared to the Grenager and Manning's system

Summary

Novel framework for unsupervised role induction

Concept: detect alternate linkings and find their canonical syntactic form

➤ Model:

extends the logistic classifier with latent variables trained on parsed output which is used as a noisy target for learning

> Potential:

embed argument identification system replace treebank trained parser with chunker

References

Lang, Joel, and Mirella Lapata. "Unsupervised induction of semantic roles." *Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics*. Association for Computational Linguistics, 2010.

Palmer, Martha, Daniel Gildea, and Paul Kingsbury. 2005. The Proposition Bank: An Annotated Corpus of Semantic Roles. Computational Linguistics, 31(1):71–106.

Georgia Maniati University of Edinburgh March 8, 2016

Thank you!