Linguistic Regularities in Continuous Space Word Representations

MIKOLOV, YIH & ZWEIG (2013)

ANDREW WATSON

Outline

Concepts

- Continuous Space Word Representations
- Linguistic Regularities
- Recurrent Neural Networks

• Experiments

- Syntactic Test
- Semantic Test
- Model Vector Offset Method
- Results
- Conclusions

Continuous Space Word Representations

Use of Neural Network Language Models to predict the next word given the previous words

• Recurrent Neural Networks in particular.

Training a neural network language model also provides implicitly learned word representations.

• High dimensional, real valued vectors.

These capture meaningful syntactic and semantic regularities

Capturing Linguistic Regularities

Constant vector offsets between the learned representations of syntactically/semantically words

$$x_{apple} - x_{apples} \approx x_{car} - x_{cars}$$

$$x_{family} - x_{families} \approx x_{car} - x_{cars}$$

$$x_b - x_a \approx x_d - x_c$$

Recurrent Neural Network Language Model

w(t) Input: "One-of-N"/"One hot" vector y(t) Dimensionality = Vocabulary Size v $\mathbf{s}(t) = f \left(\mathbf{U} \mathbf{w}(t) + \mathbf{W} \mathbf{s}(t-1) \right)$ $\mathbf{y}(t) = g\left(\mathbf{V}\mathbf{s}(t)\right),$ $f(z) = \frac{1}{1 + e^{-z}}, \quad g(z_m) = \frac{e^{z_m}}{\sum_k e^{z_k}}.$ s(t-1)

Figure 1: Recurrent Neural Network Language Model.

Testing Regularities

Testing Syntactic Regularity

Test set of analogy questions of the form:

• "A is to B as C is to D"

"car is to cars as bank is to ____"

Tagged 267m words of newspaper text from Penn Treebank POS tags.

Category	Relation	Patterns Tested	# Questions	Example
Adjectives	Base/Comparative	JJ/JJR, JJR/JJ	1000	good:better rough:
Adjectives	Base/Superlative	JJ/JJS, JJS/JJ	1000	good:best rough:
Adjectives	Comparative/	JJS/JJR, JJR/JJS	1000	better:best rougher:
	Superlative			
Nouns	Singular/Plural	NN/NNS,	1000	year:years law:
		NNS/NN		
Nouns	Non-possessive/	NN/NN_POS,	1000	city:city's bank:
	Possessive	NN_POS/NN		
Verbs	Base/Past	VB/VBD,	1000	see:saw return:
		VBD/VB		
Verbs	Base/3rd Person	VB/VBZ, VBZ/VB	1000	see:sees return:
	Singular Present			
Verbs	Past/3rd Person	VBD/VBZ,	1000	saw:sees returned:
	Singular Present	VBZ/VBD		

Table 1: Test set patterns. For a given pattern and word-pair, both orderings occur in the test set. For example, if "see:saw return:___" occurs, so will "saw:see returned:___".

Testing Semantic Regularity

SemEval-2012 Task 2, *Measuring Relation Similarity*

Given a group of word pairs, order them according to the extent they capture the same relationship as a given reference pair

eg;

"clothing is to shirt as dish is to bowl"

Testing the Model – Vector Offset Method

Assume relations are present as vector offsets

Syntactic Relations

$$\circ \ y = x_b - x_a + x_c$$

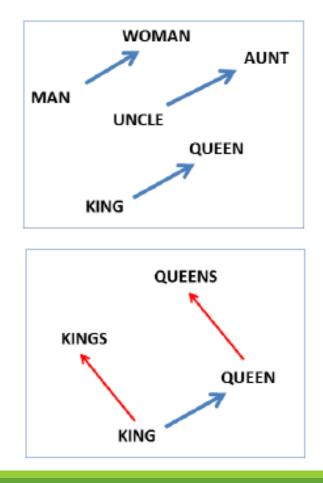
• $w * = argmax_w \frac{x_w y}{||x_w||||y||}$

Cosine Similarity

Vector Offset

Semantic Relations

• Word d is given – Difference in cosine similarity between the pairs.



Syntactic Regularities

Method	Adjectives	Nouns	Verbs	All
LSA-80	9.2	11.1	17.4	12.8
LSA-320	11.3	18.1	20.7	16.5
LSA-640	9.6	10.1	13.8	11.3
RNN-80	9.3	5.2	30.4	16.2
RNN-320	18.2	19.0	45.0	28.5
RNN-640	21.0	25.2	54.8	34.7
RNN-1600	23.9	29.2	62.2	39.6

Table 2: Results for identifying syntactic regularities for different word representations. Percent correct.

Syntactic Regularities

Method	Adjectives	Nouns	Verbs	All
RNN-80	10.1	8.1	30.4	19.0
CW-50	1.1	2.4	8.1	4.5
CW-100	1.3	4.1	8.6	5.0
HLBL-50	4.4	5.4	23.1	13.0
HLBL-100	7.6	13.2	30.2	18.7

Table 3: Comparison of RNN vectors with Turian's Collobert and Weston based vectors and the Hierarchical Log-Bilinear model of Mnih and Hinton. Percent correct.

Semantic Regularities

Method	Spearman's ρ	MaxDiff Acc.
LSA-640	0.149	0.364
RNN-80	0.211	0.389
RNN-320	0.259	0.408
RNN-640	0.270	0.416
RNN-1600	0.275	0.418
CW-50	0.159	0.363
CW-100	0.154	0.363
HLBL-50	0.149	0.363
HLBL-100	0.146	0.362
UTD-NB	0.230	0.395

Table 4: Results in measuring relation similarity

Semantic Regularities –

 Current state of the art results on SemEval 2 to contextualise the RNN's performance scores.

http://aclweb.org/aclwiki/index.php?title=SemEval-2012_Task_2_%28State_of_the_art%29

Algorithm	Reference	MaxDiff@	Spearman 🖉
BUAP	Tovar et al. (2012)	31.7	0.014
Random baseline	Jurgens et al. (2012)	31.2	0.018
Duluth-V2	Pedersen (2012)	31.1	0.038
Duluth-V1	Pedersen (2012)	31.5	0.039
Duluth-V0	Pedersen (2012)	32.4	0.050
PMI baseline	Jurgens et al. (2012)	33.9	0.112
UTD-SVM	Rink & Harabagiu (2012)	34.7	0.116
UTD-NB	Rink & Harabagiu (2012)	39.4	0.229
RNN-1600	Mikolov et al. (2013)	41.8	0.275
UTD-LDA	Rink & Harabagiu (2013)		0.334
PairDirection	Levy & Goldberg (2014)	45.2	
Com	Zhila et al. (2013)	45.2	0.353
SuperSim	Turney (2013)	47.2	0.408

Conclusion

- Word representations learnt by RNN language models generally perform well at capturing semantic and syntactic regularities.
- Generally applicable Vector Offset Method for identifying linguistic regularities in continuous space word representations.
- "Byproduct of an unsupervised maximum likelihood training criterion on a large amount of text data."

- Further study:
 - Further testing of the system's robustness
 - Vectors can represent different linguistic regularities what about testing performance on combinations such as person and number in Verbs?