Topics in Natural Language Processing

Shay Cohen

Institute for Language, Cognition and Computation

University of Edinburgh

Lecture 7

Administrativia

I received suggested topics from most of you

- If you didn't send a topic yet, please send it as soon as possible
- Next thing: scheduling everybody and allocating brief paper responses
- I will try to allocate brief paper responses on the same topic you present (but different papers)
- It will not always work out

Last class

Semiring inference: CKY and the inside algorithms

$$
\text { (}) \sum_{\max ^{x}}^{\sum_{x}^{+}}
$$

$$
\begin{aligned}
& \alpha(A, i, j)=\underset{\substack{k \\
k \rightarrow B, c}}{(} \alpha(B, i, k) \otimes \alpha(c, k+1, j) \\
& i, j \in \mathbb{N}, A \in N
\end{aligned}
$$

Parsing as Weighted Logic Programming

$\operatorname{constit}(a, i, j) \oplus=\operatorname{constit}(b, i, k) \otimes \operatorname{constit}(c, k+1, j) \otimes \operatorname{rule}(a \rightarrow b c)$
$\operatorname{constit}(a, i, i) \oplus=\operatorname{rule}\left(a \rightarrow w_{i}\right)$

Goal: constit($S, \not, \not, n)$

Example of a Weighted Logic Programme

We are given a sequence w_{1}, \ldots, w_{n} of some symbols.

$$
\begin{aligned}
& \operatorname{prob}(b, i) \oplus=\operatorname{prob}(a, i-1) \otimes \operatorname{transition}(a \rightarrow b) \otimes \operatorname{emission}\left(b, w_{i}\right) \\
& \operatorname{prob}(a, 1) \oplus=\operatorname{start_ \operatorname {state}(b)\otimes \operatorname {emission}(a,w_{1})}
\end{aligned}
$$

$$
\alpha(B, i)=\sum_{A} \alpha(A, i-1) \times t(A \rightarrow B) \times \underset{\left(B \rightarrow w_{i}\right)}{ } \alpha
$$

"Forward" algoriblu

$a \otimes)^{6}$	$a \times b$
$a(t)^{b}$	$\max \{a, b\}$

Example of a Weighted Logic Programme

We are given a sequence w_{1}, \ldots, w_{n} of some symbols.
$\operatorname{prob}(b, i) \oplus=\operatorname{prob}(a, i-1) \otimes \operatorname{transition}(a \rightarrow b) \otimes \operatorname{emission}\left(b, w_{i}\right)$
$\operatorname{prob}(a, 1) \oplus=\operatorname{start_ state}(b) \otimes$ emission $\left(a, w_{1}\right)$

Hidden Markov models and the forward algorithm:

- emission are the emission probabilities
- transition are the transition probabilities
- start_state are the initial probabilities
- $\operatorname{prob}(b, i)$ gives the probability $p\left(w_{1}, \ldots, w_{i}, S_{i}=b\right)$

Weighted Logic Programming

Once we present the inference algorithm as a weighted logic program, there are general-purpose algorithms to solve it.

- The "agenda" algorithm
- Search algorithms
- Tabular algorithms

If that interests you, take a look at http://www. dyna.org.

Parsing Using Search
State space: partial derivations aa $A B c d E A$
Need a strategy to explore space.

Inference Using Graphs and Hypergraphs

Consider the context-free grammar:
$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{NP} \rightarrow \mathrm{DT}$ NN
$\mathrm{VP} \rightarrow \mathrm{VB}$ NP
VB \rightarrow chases
NN \rightarrow dog | cat | chases
DT \rightarrow the
NP \rightarrow DT NN NN
We want to parse: $\frac{\text { The dog chases the cat }}{\frac{1}{2} \frac{3}{4}}$
What are the potential constituents we can create? (nonterminals with endpoint spans)

Today's class

- Log-linear models and their estimation
- Regularisation

Estimation until now

- Count and normalise
- Corresponds to maximum likelihood estimate for multinomial models

A Type-based POS Tagging Model

- Want to model $p(\operatorname{tag} \mid$ word $)$
- Can use a simple multinomial model, but...
- What about orthography and morphology?
- What about unseen words?

Problems (1) Un seen words
linguistic structure
(1) rot expolit.d count \& normalize

Linear Score for POS Tagging Model

$$
\Omega=T \times V \quad T-t_{0} y \quad V-\text { vocabulary }
$$

Linear score:

$$
\operatorname{scone}(y \mid x)=\sum_{i=1}^{d} w_{i} g_{i}(x, y)
$$

$$
g_{\cdot k}(x, y)=I(x=\log , y=V B)
$$

$$
I(y=P N, \quad x=\text { capitalized })
$$

Probability model:

$$
p(x, y)=\frac{\exp (\text { scone }(y \mid x))}{\sum_{x, y} \exp (\text { score ly|x) })} \quad I(y=V B, x \text { ends } \quad \text { in ion })
$$

Estimation

We observe $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
What is the likelihood?

$$
\begin{aligned}
f\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n} \mid w\right) & =\prod_{i=1}^{n} p\left(x_{i}, y_{i} \mid w\right)= \\
& =\prod_{i=1}^{n} \frac{\exp \left(\sum_{j=1}^{d} w_{j} g_{j}\left(x_{i}, y_{i} \mid\right)\right)}{z(w)} \\
z(w) & =\sum_{x, y} \exp \left(\sum_{j=1}^{d} w_{j} g_{j}(x, y)\right)
\end{aligned}
$$

Estimation

$$
f\left(w \mid x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=\prod_{i=1}^{n} \frac{\exp \left(w^{\top} g(x, y)\right)}{Z(w)}
$$

$$
\begin{aligned}
& \text { What is the log-likelihood? } \\
& \begin{array}{l}
L\left(w \mid x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{\exp \left(w^{\top} g\left(x, y_{i}\right)\right)}{z(w))}\right)= \\
=\frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} g\left(x_{1}, y_{i}\right)-\log z(w)\right)= \\
=\left[\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{l} w_{j} g_{j}\left(x_{i}, y_{i}\right)\right]-\log _{j} z(\omega)
\end{array}
\end{aligned}
$$

Maximising the log-likelihood

$$
w^{*}=\arg \max _{w} L\left(w \mid x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)
$$

Maximising the log-likelihood

Many of the maximisation algorithms are a variant of the update:

$$
w^{(t+1)} \leftarrow w^{(t)}+\mu v
$$

where $v \in \mathbb{R}^{d}$ and $v_{i}=\frac{\partial L}{\partial w_{i}}\left(w^{(t)}\right)$.

Estimation

What is the average log-likelihood?

$$
\begin{aligned}
& L\left(w \mid x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{d} w_{j} g_{j}\left(x_{i}, y_{i}\right)-\log Z(w)\right) \\
& \text { What is the derivative? }
\end{aligned}
$$

What is the derivative?

$$
\begin{aligned}
\frac{\partial L}{\partial w_{j}}= & \frac{1}{n} \sum_{i=1}^{n} 0+0+c+\ldots+\underbrace{}_{j}\left(x_{i}, y_{i}\right)+c \ldots+0 \\
& -\underbrace{\frac{1}{z(w)} \cdot \frac{\partial z}{\partial w_{j}}}_{\text {chair rub }}=[\frac{1}{n} \sum_{i=1}^{n} \underbrace{g_{j}\left(x_{i}, y_{i}\right)}_{j}]-\frac{1}{z(w)} \cdot \frac{\partial z}{\partial w_{j}}
\end{aligned}
$$

$$
\begin{array}{lr}
\text { Derivative of } Z(w) & {[e \times(f(x))]^{\prime}=} \\
\begin{array}{ll}
Z(w)=f^{\prime}(x) \cdot e^{x} \rho
\end{array}(f(x)) \\
\frac{\partial Z}{\partial w_{j}}(w)=\underbrace{\sum_{j, y} e x p}(\underbrace{d} w_{j} g_{j}(x, y))
\end{array}
$$

Gradient of average log-likelihood

$$
\begin{aligned}
& \frac{\partial L}{\partial w_{j}}=\left(\frac{1}{n} \sum_{i=1}^{n} g_{j}\left(x_{i}, y_{i}\right)\right)-\sum_{x, y} \frac{\exp \left(\sum_{k=1}^{d} w_{k} g_{k}(x, y)\right)}{Z(w)} g_{j}(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{x, y}^{\frac{\exp \left(\sum_{k=1}^{d} w_{k} g_{k}(x, y)\right)}{Z(w)} g_{j}(x, y)}=\sum_{x, y} p(x, y \mid w) g_{j}(x, y)= \\
& =E_{p(\mid w)}\left[g_{j}(x, y)\right]
\end{aligned}
$$

Gradient of average log-likelihood

$$
\frac{\partial L}{\partial w_{j}}=\left(\frac{1}{n} \sum_{i=1}^{n} g_{j}\left(x_{i}, y_{i}\right)\right)-\sum_{x, y} \frac{\exp \left(\sum_{k=1}^{d} w_{k} g_{k}(x, y)\right)}{Z(w)} g_{j}(x, y)
$$

$\frac{1}{n} \sum_{i=1}^{n} g_{j}\left(x_{i}, y_{i}\right)=$
$\sum_{x, y} \frac{\exp \left(\sum_{k=1}^{d} w_{k} g_{k}(x, y)\right)}{Z(w)} g_{j}(x, y)=$

Therefore, the gradient is the difference between empirical expectations and expectations under the model

