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Administrativia

e Is everybody getting my emails? There are a few addresses
that have emails bounce back.



Last class
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MAP and posteriors

In general,

e Priors are especially important when the amount of data is small

e As there is more data, the prior becomes less influential on the
posterior

e Under some mild conditions, the posterior is a distribution
concentrated around the MLE



Conjugacy of prior and likelihood
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Prior is “hyperparametrised”. What is the posterior?
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Definition of Conjugacy

_l;ﬂma

Let P be a set of fyriors hyperparametised by a set (x, for a
parameter space ©. Therefore, each p € P is a probability
distribution p(0 | ). Let M be a model over 2 such that each p ¢ M
is a probability distribution p(w | 8). We say, P is conjugate to M, if
for any choice of a € (¥ and data wy, ..., w, it holds that
p(@|wi,...,w,, ) €P.



Definition of Conjugacy

Let P be a set of priors hyperparametised by a set (x, for a
parameter space ©. Therefore, each p € P is a probability
distribution p(0 | ). Let M be a model over 2 such that each p ¢ M
is a probability distribution p(w | 8). We say, P is conjugate to M, if
for any choice of a € (¥ and data wy, ..., w, it holds that
p(@|wi,...,w,, ) €P.

Previous example (argh-blah example):
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Posterior new hyperparameters:



Conjugacy — always useful?

Trivial non-useful example of conjugacy
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Conjugacy — always useful?

Another trivial non-useful example of conjugacy
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Conjugacy: summary

Conjugacy is useful when:

e The prior is not too poor
e |t is easy to calculate the posterior hyperparameters



Minimum Description Length and MAP
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Minimum Description Length and MAP

What is —log, p(O|wi, ..., wa) 7 (e plavievs 5|.AL

What is —log, p(0)?



Minimum Description Length and MAP

What is —log, p(O|wy, ..., wy,) ?
What s —log,p(6)? K biks ey uciel booeveede ©

What is —log, p(wq,...,w,|0)? * bkt nJ'«Hei 1,
tweela e dut 'er



Minimum Description Length and MAP
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What is —log, p(0|wy, ..., wy,) ° < anf max P(Ww-f“w :

What is —log, p(#)? Pl W)
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MAP: 6* = arg maxy log, p(6) + log, p(wi, . .., w,|0)

What is —log, p(wy,...,w,|0)?
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Encoding 6* requires separately: -
) el
e Encoding the hypothesis according to the prior ) t 9)

MD
e Encoding the data according to the hypothesis

That'’s the “minimum description length” criterion



Summary

Bayesian analysis:

Only uses Bayes’ rule to do inference

Posterior is a distribution over parameters

Can summarise the posterior, e.g. MAP, to get a point estimate

Need to be careful about choice of prior

Especially important with small amounts of data

MAP has a connection to minimum description length (MDL)



Today’s class

What is our Q27?




Today’s class

What is our Q27?

Examples:

e Finite sets of symbols (such as a set of words)

Sequences

Trees - “dependency” and others

Graphs and hypergraphs

e Miscellaneous - tailored to a specific problem



Bag of words

= 2 Ai{um*‘i-)] J = (L"‘J" C)
e Does not have much structure

e Sitill, a very useful way to decompose the space of documents

e Especially wheh interested in “content” and not “syntax”

e We will re-visit t?is model later



Segmentation
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Useful for: \‘Hi JF \ u.,,‘\ r*'rzia

e Segmentation of languages such as Chinese

|dentifying co-locations (New York) M L5t t. Yk
C. (Y i, 4 '

Tokenisation Clﬂ’*"’-ﬂ

Sentence segmentation (a “solved” problem)

Morphological segmentation (for example, Turkish)



Sequence labelling
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When is it useful?

e Part-of-speech tagging
e POS tagging using majority vote: 90%

e POS tagging using sequence labelling: 97%
e Whenever context is needed to decipher an observation



Chunking
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When is it useful? C C C 0 o
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e Shallow parsing (or as a precursor to full parsing)
R-1-0
e Identifying named entities

e Connection to sequence labelling?
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Parsing

) =

Two main types of parsing structures:
e Constituency
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The dog saw him

e Dependency



Conversion of constituency to dependency
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D-the N-dog V-saw NP

the dog saw P-him
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Conversion of constituency to dependency
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Conversion of constituency to dependency

NP-dog VP-saw
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Conversion of constituency to dependency

S-saw

NP-dog VP-saw
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D-the N-dog V-saw NP

the dog saw P-him

him



Conversion of constituency to dependency

S-saw
NP-dog @
AN —

D-the N-dog V-saw NP

the dog saw P-him

him
How to convert to dependency?
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Conversion of dependency to constituency

Not trivial
Some information is lost (syntactic categories)

But at least can recover the spans of the “constituents”



Projective vs. non-projective parsing

Projective trees:
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Non-projective trees:

We saw a house on Tuesday that we liked



