Topics in Natural Language Processing

Shay Cohen

Institute for Language, Cognition and Computation

University of Edinburgh

Lecture 4

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

Administrativia

• Is everybody getting my emails? There are a few addresses that have emails bounce back.

・ロト・日本・山下・ 山下・ 日・ うへぐ

Last class

Bayesian inference: $p(\theta)$ prive $p(w_1 \dots w_n | \theta) =$ $= \prod_{i=1}^{n} p(w_i | \theta)$ $p(\theta | w_1 \dots w_n) = p|_{\theta} p(w_1 \dots w_n | \theta) p(\theta) \wedge \theta$ $p(w_1 \dots w_n) = \int_{\theta} p(w_1 \dots w_n | \theta) p(\theta) \wedge \theta$ $M \wedge P = maximum \wedge p(\theta | w_1 \dots w_n)$.

◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ▶

MAP and posteriors

In general,

- Priors are especially important when the amount of data is small
- As there is more data, the prior becomes less influential on the posterior
- Under some mild conditions, the posterior is a distribution concentrated around the MLE

- ロ > - 4 回 > - 4 □ >

Conjugacy of prior and likelihood

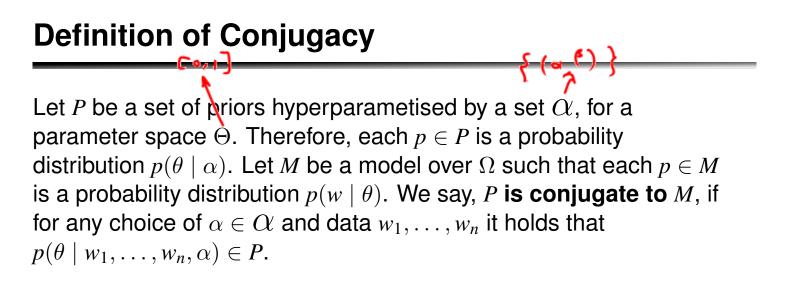
 $p(\theta) \propto \theta^{\alpha} (1-\theta)^{\beta}$ "Bet" $p(w|\theta) = \theta^{I(w)} (1-\theta)^{(1-I(w))}$

Prior is "hyperparametrised". What is the posterior?

$$p(\theta|w_1...w_n) d \theta = \frac{\alpha_1+\alpha_2}{\alpha_1} (1-\theta) = \frac{\beta_1+\beta_2}{\beta_1}$$

 $p(\theta|w_1...w_n) d \theta = \frac{\alpha_1+\alpha_2}{\alpha_1} (1-\theta) = \frac{\beta_1+\beta_2}{\beta_1}$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●



・ロト・日・エリト・日・ション

Definition of Conjugacy

Let *P* be a set of priors hyperparametised by a set Ω , for a parameter space Θ . Therefore, each $p \in P$ is a probability distribution $p(\theta \mid \alpha)$. Let *M* be a model over Ω such that each $p \in M$ is a probability distribution $p(w \mid \theta)$. We say, *P* is conjugate to *M*, if for any choice of $\alpha \in \Omega$ and data w_1, \ldots, w_n it holds that $p(\theta \mid w_1, \ldots, w_n, \alpha) \in P$.

Previous example (argh-blah example):

$$M = \{\rho(w|\theta) \mid \theta \in [c_1]\}$$
$$P = \{\theta^{\alpha}(1-\theta)^{\beta} = \rho(\theta) \mid \alpha, \beta \geq 0\}$$

Posterior new hyperparameters:

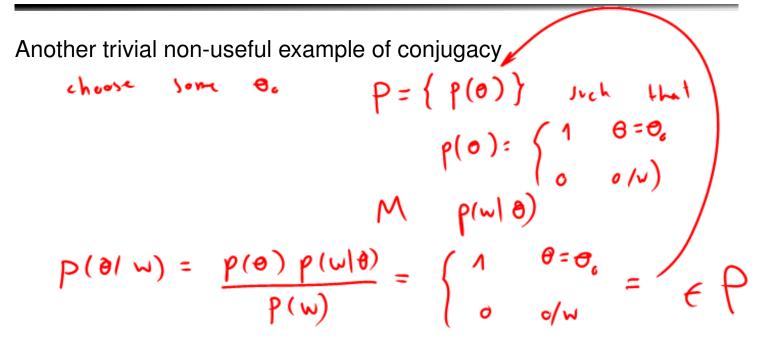
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conjugacy – always useful?

Trivial non-useful example of conjugacy

・ロ・・日・・日・・日・・日・

Conjugacy – always useful?



・ロト・西・・山・・ も・ しょうくい

Conjugacy: summary

Conjugacy is useful when:

- The prior is not too poor
- It is easy to calculate the posterior hyperparameters

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is $-\log_2 p(\theta|w_1, \ldots, w_n)$? #6.1, rejurned to encode

& given wir - Wa

▲□▶▲□▶▲≡▶▲≡▶ ▲□ ▼ ● ●

What is $-\log_2 p(\theta|w_1, \ldots, w_n)$? (exp(x)) s, he

What is $-\log_2 p(\theta)$?

▲□▶▲□▶▲□▶▲□▶ ■ のへで

What is $-\log_2 p(\theta|w_1, \ldots, w_n)$? What is $-\log_2 p(\theta)$? # 6.4s rejoried to excerding What is $-\log_2 p(w_1, \ldots, w_n|\theta)$? # 6.4s rejoried to the proof where the dat for a given θ

▲□▶▲□▶▲□▶▲□▶ ▲□ ▼ ろへ⊙

	0= an max (() wi w.):
What is $-\log_2 p(\theta w_1,\ldots,w_n)$?	= any max p(w,, 2, 10) p(0) =
What is $-\log_2 p(\theta)$?	= ~ max ((w, w, 1 d) p(d) =
What is $-\log_2 p(w_1, \ldots, w_n \theta)$?	= any max lg 2 p(w,, w, 10) + ly p(0)
MAP: $\theta^* = \arg \max_{\theta} \log_2 p(\theta) + \log_2 p(w_1, \dots, w_n \theta)$ Encoding θ^* requires separately:	
 Encoding the hypothesis according to the prior 	
 Encoding the data according to the hypothesis 	

That's the "minimum description length" criterion

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽٩ペ

Summary

Bayesian analysis:

- Only uses Bayes' rule to do inference
- Posterior is a *distribution* over parameters
- Can summarise the posterior, e.g. MAP, to get a point estimate
- Need to be careful about choice of prior
- Especially important with small amounts of data
- MAP has a connection to minimum description length (MDL)

▲□▶▲□▶▲≣▶▲≣▶ ■ のへぐ

Today's class

What is our Ω ?

pome true » dep Sconstit

segumae FSA postas

Today's class

What is our Ω ?

Examples:

- Finite sets of symbols (such as a set of words)
- Sequences
- Trees "dependency" and others
- Graphs and hypergraphs
- Miscellaneous tailored to a specific problem

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽�?

Bag of words

- $\Omega = \{ decomments \} \qquad d = (w:c)_{w \in V}$
 - Does not have much structure
 - Still, a very useful way to decompose the space of documents
 - Especially when interested in "content" and not "syntax"
 - We will re-visit this model later

Segmentation

- Segmentation of languages such as Chinese
- Identifying co-locations (New York)
- **Tokenisation**
- Sentence segmentation (a "solved" problem)
- Morphological segmentation (for example, Turkish)

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ → ■ − りへで

Mr. Mouse ate the charef.

Sequence labelling

 $\Omega = \sqrt{\star} \tau^{\star}$

T- set of labels V- vocabulary

When is it useful?

- Part-of-speech tagging
 - POS tagging using majority vote: 90%
 - POS tagging using sequence labelling: 97%
- Whenever context is needed to decipher an observation

▲□▶▲□▶▲□▶▲□▶ = のへの

Chunking

$$\Omega = \left\{ \begin{array}{ll} s + rings \right\} \times \left\{ \begin{array}{ll} s + b + k + ings \right\} & Mr. & Mowle & alle the cheen \\ When is it useful? & C & C & 0 & 0 & 0 \\ B & I & 0 & 0 & 0 & 0 \\ \end{array} \right.$$

$$Shallow parsing (or as a precursor to full parsing) & B - I - 0 \\ \hline B & I & 0 & 0 & 0 & 0 \\ \end{array}$$

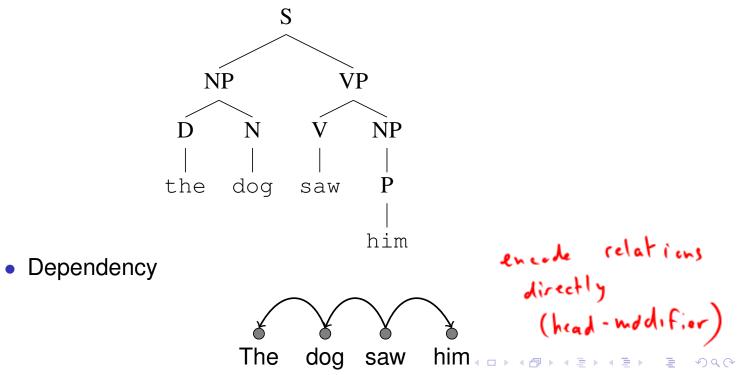
$$B - I - 0 & B - I - 0 & B - I - 0 \\ \hline B & I & 0 & 0 & 0 & 0 \\ \hline B & I & 0 & 0 & 0 \\ \hline B & I & 0$$

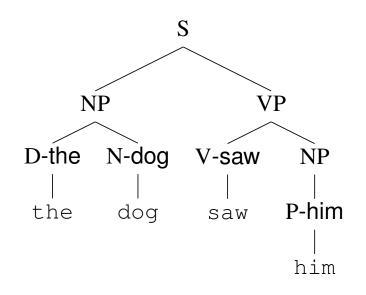
Parsing

 $\Omega =$

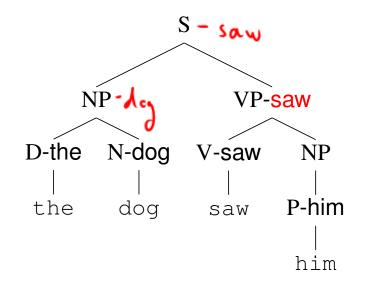
Two main types of parsing structures:

Constituency

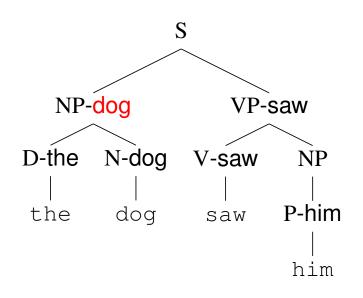




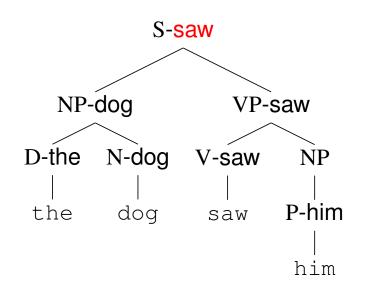
▲ □ ▶ ▲ 酉 ▶ ▲ 亘 ▶ ▲ 国 → 今へぐ



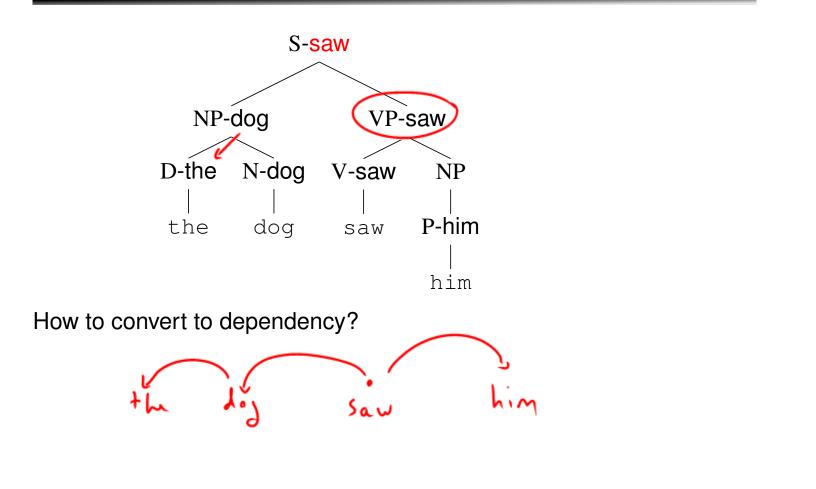
シック・ 叫 ・ ・ 単・ ・ 間・ ・ 日・



▲ □ ▶ ▲ 酉 ▶ ▲ 亘 ▶ ▲ 亘 → りへぐ



・ロト・日・・川川・・ 日・ うくら



・ロト・日本・日本・日本・日本

Conversion of dependency to constituency

Not trivial

Some information is lost (syntactic categories)

But at least can recover the spans of the "constituents"

・ロト・1日・1日・1日・1日・

Projective vs. non-projective parsing

Projective trees:

We one never goig to have crossing edges if we drow the edges above the surtence.

Non-projective trees:

We saw a house on Tuesday that we liked

・ロト・1日・1日・1日・1日・