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Administrativia

Reminder: the requirements for the class are presentations, brief
paper responses and an essay.

o | will suggest papers and topics to cover next weekend
e They will be of different difficulty levels

e Example topics: topic models, language modeling, parsing,
semantics, neural networks (your own topic?)

e Choose whatever level of difficulty you feel comfortable with, so
that: (a) your presentation is clear; (b) your brief paper response
is informative; (c) the essay goes into details about the topic.



Last Class

e What is learning?
o What is a statistical model?

e Basic refresher about probability
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Last class: reminder

Probability distributions, random variables, parametrisation
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Today

e What does statistical learning do?

e Induce a model from data
e Models tell us how data is generated
e Learning does the “opposite”

¢ Two different paradigms to Statistics: frequentist and Bayesian



Approach 1: frequentist Statistics

e We need an objective function f(6,wy, ..., wy)

e The higher the value of f is, the better it predicts the training
data
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Choice of f: likelihood

f(@,wy,...,w,) is areal-valued function "
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Log-likelihood
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Next step

Estimation: maximisation ofL The result is the “best” 0 that fits to
the data according to the objective functionL
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Pre-historic languages

Imagine a language with two words: “argh” and “blah”



Pre-historic languages
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Pre-historic languages

What is the likelihood objective function?
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Pre-historic languages .+ cont of bk

Vg =D
Log-likelihood: L(0,wy,...,w,) = alogf + blog(1 — 0)

The maximisation problem: 6* = argmaxy L(6, w1, ..., wy)
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How to maximise this?
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Maximisation of log-likelihood

How to maximise the log-likelihood?

e Akt doadive
He o o= \hlihed ahdh wd

Y O.



Principle of maximum likelihood estimation

e Objective function: log-likelihood (or likelihood)

e Estimation: maximise the log-likelihood with respect to the set
of parameters 6



A guessing game

| choose a random number between 1 and 20. You need to guess it,
and each time you make a guess | tell you whether your guess is
higher or lower than my number. What is your strategy to guess the

number as quickly as possible?
-
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A guessing game

| choose a random number between 1 and 20. You need to guess it,
and each time you make a guess | tell you whether your guess is
higher or lower than my number. What is your strategy to guess the
number as quickly as possible?
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| choose a random number x between 1 and 20 from a distribution
p(x). You know p and need to guess the number. What is your
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What does log-probability mean?

Let p be a probability distribution over Q2. What is —log, p(x)?
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Another view of maximum likelihood estimation

What is the “empirical distribution?”
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Cross-entropy

What is the definition of cross-entropy?
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Likelihood maximisation

By doing maximum likelihood maximisation we:

e Choose the parameters that make the data most probable,

or, from an information-theoretic perspective:

e Choose the parameters that make the encoding of the data
most succinct (bit-wise),

in other words, \&le

e Minimize the cross-entropy between the empirical distribution
and the model we choose.



A bit of history

One of the earliest experiments with statistical analysis of language
— measuring entropy of English

2-3 bits are required for English



Approach 2: the Bayesian approach

e History: 1700s. Seminal ideas due to Thomas Bayes and
Pierre-Simon Laplace

e A lot has changed since then...



Next class

e The core ideas in Bayesian inference

e Structure in NLP - what type of computational structures are
used and how?



