### **Topics in Natural Language Processing**

Shay Cohen

#### Institute for Language, Cognition and Computation

University of Edinburgh

Lecture 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

## **Topics in NLP**

- · We will cover the basic methodology in NLP
- There will be a focus on statistical learning

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Even more so, structured prediction

# **Topics in NLP**

### Prerequisites:

· Some familiarity with machine learning and probability

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

• If something is unclear, ask!

### Things to Do:

- Student presentations (20%)
- Brief paper responses (25%)
- Essay (55%)

Office hours: By appointment

## NLP in the Old Days

1950s-1980s: handwritten rules



IBM'S WATSON (right) AND FRIENDS: | For a mathematical wizard ...

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

## **NLP Now**

#### late 1980s until now: statistical learning



# Learning

Learning is:

- Experience translated into expertise/knowledge
- Memorisation with generalisation
- Machine learning and NLP:
  - Experience = Training data
  - Knowledge = Decoder or Prediction Model
  - Used to either mimic humans or transcend their abilities

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

## What is a Model?



From Merriam-Webster:

- a usually small copy of something
- a set of ideas and numbers that describe the past, present, or future state of something (such as an economy or a business)

When is a model a good model?

## What is a Statistical Model?

#### Predict the future. Probabilistically.



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

## Probabilitywand Statistics: Remindeltator - www.PDFAnno

Probability distribution? Example: unigram model

$$p(w) \ge 0$$
  $\sum_{w} p(w) = 1$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

# Randome variables Version of PDF Annotator - www.PDFAnno

Random variable:

$$X(w) = \Omega_2$$
  
 $X(w) = \Omega_2$   
 $X(jumped) = n_d$   
 $X(jumped) = n_d$   
 $X(w)$  returns the last two letters

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Randorduceeialaheithiraduceephotenation voti studie to motator - www.PDFAnno

$$p(X(w) = ed) = \sum_{\substack{w \text{ ends} \\ in ed}} p(w)$$

$$p(X(w)=1) = \sum_{w \in V} p(w) = \sum_{w \in V} p(w) \times (w)$$

$$w = \sum_{w \in V} p(w) \times (w)$$

$$w = \sum_{w \in V} p(w) \times (w)$$

$$F(w) = F[X]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

to movies X(w) is o o/w

## Model Earning a Trial Version of PDF Annotator - www.PDFAnno

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A set of probability distributions (unigram example):

 $\left\{ p(\omega), p_1(\omega), p_3(\omega), \dots \right\}$ 

### Papameters with a Trial Version of PDF Annotator - www.PDFAnno

A set of parameters: 
$$(+)$$
  
 $p(w|\theta) = prebability that depends on  $\Theta$   
 $\{p(w|\theta) \mid \Theta \in \Theta\}$   
 $p_i(w) \cdot p(v|\theta_i)$   
 $p_i(w) \cdot p(v|\theta_i)$   
 $p_i(w) \cdot p(w|\theta_i) \cdot \dots$   
 $i \leq 1$   
 $\Theta \in \mathbb{R}$   $\Theta_i \in (o, i)$   $\sum \Phi_i = 1$$ 

## Anothere Parametrisation of PDF Annotator - www.PDFAnno

Rely on properties of the words:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

What is training data?

W1, W2, W3, ..... WN



### Estimation with a Trial Version of PDF Annotator - www.PDFAnno

What is the fit of the data to the model?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

## NLPoBroblem Examplesic Decemberth Glassification Anno





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



## NLP Problem Example: FrameNet Parsing

find predicate-argument structure



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

## **Back to Modelling**

What if the space to model is complex? Modelling documents.

## **Modelling a Problem**

- Define a sample space
- Define the structure of the sample space
- Decide on a parametrisation

Then one can proceed with data collection and learning

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

## **Modelling - Tradeoffs**

- "Exact copy", detailed
- Not too many parameters

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Efficient to work with

## **Next class**

Paradigms in statistical learning

- Frequentist approaches
- Bayesian approaches
- "Computer science approaches?"

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □