
Non-projective Dependency Parsing using
Spanning Tree Algorithms

 Qian Zhong

1

Outline

• Basic Concepts

• Edge-based factorization

• Parsing Algorithm & Learning Algorithm

• Experiments and Results

2

Recap: Dependency Parsing Basics

• Dependency relations: syntactic structure essentially
consists of words linked by binary, asymmetrical relations

Dependency Structure of English Sentence, Figure Adapted from Dependency Parsing
(Kübler et.al, 2009, p2)

3

Recap: Projective Trees

• If we say a tree is projective, we mean that if we
put the words in their linear order, preceded by the
root, the edges can be drawn above the words
without crossings, or, equivalently, a word and its
descendants form a contiguous substring of the
sentence.

4

Recap: Projective vs. non-projective Dependency Trees

• Projective Dependency Trees

• Non-Projective Dependency Trees

Figures adapted from McDonald et al., 2005

Figure A

Figure B

5

 Motivation: Dependency Parsing

• More efficient to Learn and parse while still
encoding much of the predicate-argument
information needed in applications

• Applications
Relation Extraction(Culotta and Sorensen, 2004)
Machine Translation(Ding and Palmer, 2005)
Synonym Generation(Shinyama et al., 2002)
Lexical Resource Augmentation(Snow et al., 2004)

6

Why?

Motivation: Non-projective Trees

25% of more of the sentences in some languages
cannot be given a linguistically adequate analysis
without invoking non-projective structures

(Nivre, 2009; Nivre, 2006; Kuhlman and Nivre, 2006; Havelka, 2007)

In languages with more flexible word order than
English, such as German, Dutch and Czech,
non-projective dependencies are more frequent.

7

Outline

• Basic Concepts

• Edge-based Factorization

• Parsing Algorithm & Learning Algorithm

• Experiments and Results

8

Dependency Parsing and Spanning Trees

• Edge based Factorization

Sentence:x=x1...xn

Dependency Tree y
• the set of tree edges
• (i, j)∈y if there is a dependency in y from word

xi to word xj

Score of the dependency tree
the sum of score of all the edges in the tree

9

• Edge based Factorization
score of an edge: the dot product between a high dimensional

feature representation of the edge and a weight vector
s(i, j)=w·f(i, j)

score of a dependency tree y for sentence x:

Dependency parsing: finding the dependency tree y with the
highest score for given sentence x

Dependency Parsing and Spanning Trees

10

Outline

• Basic Concepts

• Edge Based Factorization

• Parsing Algorithm & Learning Algorithm

• Experiments and Results

11

Maximum Spanning Trees: Projective

A Generic Directed Graph G=(V, E)
Vertex Set: V={v1, ..., vn}
Set E⊆[1:n]×[1:n] of pairs (i, j) of directed edges vi—>vj
Score of each edge s(i, j)
G is directed, s(i, j) does not necessarily equal s(j, i)

A Maximum Spanning Tree(MST) of G is a tree y
y⊆E
that maximizes the value for every vertex in V

For each sentence x, we define the directed graph

12

Maximum Spanning Trees: Algorithm

Figure 3: Chiu-Liu-Edmonds algorithm for finding maximum Spanning Trees in Directed Graph
13

Maximum Spanning Trees: Non-projective

1 2

3

4

5

14

Maximum Spanning Trees: projective

a dynamic programming table

C[s][t][i]

string start Ws

string ends Wt

Root

represents the value of the highest scoring projective tree that
spans the string ws . . . wt and which is rooted at word wi ,

where s ≤ i ≤ t

then C[0][n][0] would represent the value of highest scoring
dependency tree for an input sentence S = w0w1 . . . wn, which
is precisely the value we are interested in for the parsing problem

e.g. s=0, i=0

15

Maximum Spanning Trees: projective

C[i][i][i] = 0.0, for all 0 ≤ i ≤ n

16

Maximum Spanning Trees: projective

The final tree for a sentence S is then G = (V ,A[0][n][0]).
17

Maximum Spanning Trees: projective

18

Maximum Spanning Trees: projective

Figure Adapted from Dependency Parsing(Kübler et.al, 2009, p53)

 Pseudo-code for Eisner’s algorithm

19

Outline

• Basic Concepts

• Edge-based factorization

• Parsing Algorithm & Learning Algorithm

• Experiments and Results

20

Online Large Margin Learning: MIRA

Margin Infused Relaxed Algorithm (MIRA) (Crammer and Singer,2003;
Crammer et al,2003)

MIRA learning Algorithm

21

Online Large Margin Learning: single-best MIRA

The resulting online update

Related

• k highest-scoring trees with small k (McDonald et al., 2005)
• averaged perceptron algorithm(Collins, 2002) using the single highest

scoring tree to update the weight vector

MIRA updates w to maximise the margin between the corrected tree
and the highest scoring tree leading to increasing accuracy

22

Online Large Margin Learning: factored MIRA

Factoring the output by edges to obtain the following statements

• the weight of the correct incoming edge to the word xj and the
weight of all other incoming edges must be separated by a

margin of 1

• the correct spanning tree and all incorrect spanning trees are
separated by a score at least as large as the number of incorrect

incoming edges.

23

Outline

• Basic Concepts

• Edge-based factorization

• Learning Algorithm & parsing algorithm

• Experiments and Results

24

Experiments

• Czech Prague Dependency Treebank(PDT) (Hajiˇc,1998;Hajiˇc et al.,2001)

• automatically generated POS tags that are provided with the data

• they used predefined training, developing and testing split of the data set

• features only relied on the reduced POS tag set from Collins et al. (1999)

• 23% of the sentences in the training, development and test sets have at
least one non-projective dependency

• less than 2% of total edges are actually non-projective
• therefore, handling non-projective edges correctly have a relatively small

effect on overall accuracy
• Czech A, consists of the entire PDT
• Czech B, includes only the 23% of sentences with at least one
 non-projective dependency

25

Experiments

26

Results

Table 1: Dependency parsing results for Czech. Czech-B is the subset of Czech-A containing only
sentences with at least one non-projective dependency

Table 2: Dependency parsing results for English using spanning tree algorithms.

27

Summary

• formalize weighted dependency parsing as searching
 for maximum spanning trees (MSTs) in directed graphs

• Parsing Algorithm
 Non-projective: Chiu-Liu-Edmonds
 Projective: Eisner’s Algorithm

• Learning Algorithm: single/factored MIRA

• evaluated on the Prague Dependency Treebank and
increasing in efficiency and accuracy

28

References

Kübler, S., McDonald, R., & Nivre, J. (2009). Dependency parsing. Synthesis Lectures on
Human Language Technologies, 1(1), 1-127.

McDonald, R., Pereira, F., Ribarov, K., & Hajič, J. (2005). Non-projective dependency parsing
using spanning tree algorithms. In Proceedings of the conference on Human Language Technology
and Empirical Methods in Natural Language Processing (pp. 523-530). Association for
Computational Linguistics.

Nivre, J. (2009, August). Non-projective dependency parsing in expected linear time. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP: Volume 1-
Volume 1 (pp. 351-359). Association for Computational Linguistics.

29

Thank you!

Any Questions?

30

