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Recap: Dependency Parsing Basics 

• Dependency relations: syntactic structure essentially 
consists of words linked by binary, asymmetrical relations

Dependency Structure of English Sentence, Figure Adapted from Dependency Parsing
(Kübler et.al, 2009, p2)
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Recap: Projective Trees

• If we say a tree is projective, we mean that if we 
put the words in their linear order, preceded by the 
root, the edges can be drawn above the words 
without crossings, or, equivalently, a word and its 
descendants form a contiguous substring of the 
sentence. 
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Recap: Projective vs. non-projective Dependency Trees

• Projective Dependency Trees

• Non-Projective Dependency Trees

Figures adapted from McDonald et al., 2005 

Figure A

Figure B
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  Motivation: Dependency Parsing

• More efficient to Learn and parse while still 
encoding much of the predicate-argument 
information needed in applications 

• Applications
Relation Extraction(Culotta and Sorensen, 2004) 
Machine Translation(Ding and Palmer, 2005) 
Synonym Generation(Shinyama et al., 2002) 
Lexical Resource Augmentation(Snow et al., 2004) 
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Why? 

Motivation: Non-projective Trees 

25% of more of the sentences in some languages  
cannot be given a linguistically adequate analysis  
without invoking non-projective structures

(Nivre, 2009; Nivre, 2006; Kuhlman and Nivre, 2006; Havelka, 2007)

In languages with more flexible word order than 
English, such as German, Dutch and Czech,  
non-projective dependencies are more frequent.
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Dependency Parsing and Spanning Trees

• Edge based Factorization

Sentence:x=x1...xn

Dependency Tree y  
• the set of tree edges  
• (i, j)∈y if there is a dependency in y from word 

xi to word xj

Score of the dependency tree 
the sum of score of all the edges in the tree
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• Edge based Factorization
score of an edge: the dot product between a high dimensional         

feature representation of the edge and a weight vector 
s(i, j)=w·f(i, j)

score of a dependency tree y for sentence x:

Dependency parsing: finding  the dependency tree y with the 
highest score for given sentence x  

Dependency Parsing and Spanning Trees
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Maximum Spanning Trees: Projective

A Generic Directed Graph G=(V, E)
Vertex Set: V={v1, ..., vn} 
Set E⊆[1:n]×[1:n] of pairs (i, j) of directed edges vi—>vj 
Score of each edge s(i, j) 
G is directed, s(i, j) does not necessarily equal s(j, i) 

A Maximum Spanning Tree(MST) of G is a tree y
y⊆E 
that maximizes the value                      for every vertex in V 

For each sentence x, we define the directed graph 
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Maximum Spanning Trees: Algorithm 

Figure 3: Chiu-Liu-Edmonds algorithm for finding maximum Spanning Trees in Directed Graph 
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Maximum Spanning Trees: Non-projective
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Maximum Spanning Trees: projective

a dynamic programming table 

C[s][t][i]

string start Ws

string ends Wt

Root

represents the value of the highest scoring projective tree that  
spans the string ws . . . wt and which is rooted at word wi ,  

where s ≤ i ≤ t

then C[0][n][0] would represent the value of highest scoring 
dependency tree for an input sentence S = w0w1 . . . wn, which 
is precisely the value we are interested in for the parsing problem

e.g. s=0, i=0
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Maximum Spanning Trees: projective

C[i][i][i] = 0.0, for all 0 ≤ i ≤ n
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Maximum Spanning Trees: projective

The final tree for a sentence S is then G = (V ,A[0][n][0]).
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Maximum Spanning Trees: projective
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Maximum Spanning Trees: projective

Figure Adapted from Dependency Parsing(Kübler et.al, 2009, p53)

 Pseudo-code for Eisner’s algorithm
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Online Large Margin Learning: MIRA

Margin Infused Relaxed Algorithm (MIRA) (Crammer and Singer,2003; 
Crammer et al,2003)

MIRA learning Algorithm
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Online Large Margin Learning: single-best MIRA

The resulting online update

Related 

• k highest-scoring trees with small k (McDonald et al., 2005) 
• averaged perceptron algorithm(Collins, 2002) using the single highest 

scoring tree to update the weight vector

MIRA updates w to maximise the margin between the corrected tree 
and the highest scoring tree leading to increasing accuracy
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Online Large Margin Learning: factored MIRA

Factoring the output by edges to obtain the following statements

• the weight of the correct incoming edge to the word xj and the  
weight of all other incoming edges must be separated by a  

margin of 1 

• the correct spanning tree and all incorrect spanning trees are 
separated by a score at least as large as the number of incorrect  

incoming edges.
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Experiments 

• Czech Prague Dependency Treebank(PDT) (Hajiˇc,1998;Hajiˇc et al.,2001)

• automatically generated POS tags that are provided with the data 

• they used predefined training, developing and testing split of the data set 

• features only relied on the reduced POS tag set from Collins et al. (1999) 

• 23% of the sentences in the training, development and test sets have at 
least one non-projective dependency  

• less than 2% of total edges are actually non-projective  
• therefore, handling non-projective edges correctly have a relatively small 

effect on overall accuracy 
• Czech A, consists of the entire PDT 
• Czech B, includes only the 23% of sentences with at least one  
    non-projective dependency 
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Experiments 
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Results

Table 1: Dependency parsing results for Czech. Czech-B is the subset of Czech-A containing only 
sentences with at least one non-projective dependency

Table 2: Dependency parsing results for English using spanning tree algorithms.
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Summary 

• formalize weighted dependency parsing as searching  
    for maximum spanning trees (MSTs) in directed graphs 

• Parsing Algorithm 
   Non-projective: Chiu-Liu-Edmonds 
   Projective: Eisner’s Algorithm  

• Learning Algorithm: single/factored MIRA 

• evaluated on the Prague Dependency Treebank and 
increasing in efficiency and accuracy 
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Thank you! 

Any Questions?
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