Non-projective Dependency Parsing using
Spanning Tree Algorithms

Qian Zhong

Outline

- Basic Concepts
 Edge-based factorization
* Parsing Algorithm & Learning Algorithm

* Experiments and Results

Recap: Dependency Parsing Basics

 Dependency relations: syntactic structure essentially
consists of words linked by binary, asymmetrical relations

PU

ROOT Economic news had little effect on financial markets .

Dependency Structure of English Sentence, Figure Adapted from Dependency Parsing
(Kiibler et.al, 2009, p2)

Recap: Projective Trees

* |t we say a tree is projective, we mean that if we
put the words in their linear order, preceded by the
root, the edges can be drawn above the words
without crossings, or, equivalently, a word and its
descendants form a contiguous substring of the
sentence.

Recap: Projective vs. non-projective Dependency Irees

* Projective Dependency Trees

A D VA

root John hit the ball with the bat

Figure A

* Non-Projective Dependency Trees

=

John a dog yesterday which was a YO!‘thl!‘C Terrier

/ ~

root O to nové vétSinou nemd& ani zdem a taky na to véSinou nemd penize

He is mostly not even interested in the new things and in most cases, he has no money for it either.

Figure B Figures adapted from McDonald et al., 2005

Motivation: Dependency Parsing

 More efficient to Learn and parse while still
encoding much of the predicate-argument
information needed in applications

* Applications

Relation Extraction(Culotta and Sorensen, 2004)
Machine Translation(Ding and Palmer, 2005)
Synonym Generation(Shinyama et al., 2002)
Lexical Resource Augmentation(Snow et al., 2004)

Motivation: Non-projective Trees

Why?

25% of more of the sentences in some languages
cannot be given a linguistically adequate analysis
without invoking non-projective structures

(Nivre, 2009; Nivre, 2006; Kuhlman and Nivre, 2006; Havelka, 2007)

In languages with more tlexible word order than
English, such as German, Dutch and Czech,
non-projective dependencies are more frequent.

Outline

» Basic Concepts
- Edge-based Factorization
* Parsing Algorithm & Learning Algorithm

* Experiments and Results

Dependency Parsing and Spanning Trees

 Edge based Factorization

Sentence:x=x....X.

Dependency Treey

* the set of tree edges

* (i,])ey if there is a dependency in y from word
X to word X

Score of the dependency tree
the sum of score of all the edges in the tree

Dependency Parsing and Spanning Trees

 Edge based Factorization

score of an edge: the dot product between a high dimensional
feature representation of the edge and a weight vector

s(i,)=w-f(, j)

score of a dependency tree y for sentence x:
S(X, Y)=2qijyey SGND=2ajyeyw (@)

Dependency parsing: finding the dependency tree y with the
highest score for given sentence x

10

Outline

Basic Concepts
Edge Based Factorization
Parsing Algorithm & Learning Algorithm

Experiments and Results

11

Maximum Spanning Trees: Projective

A Generic Directed Graph G=(V, E)

Vertex Set: V={vi, ..., vn}

Set EC[1:n]x[1:n] of pairs (i, |) of directed edges vi—>Vj
Score of each edge s(i, j)

G is directed, s(i, |) does not necessarily equal s(j, i)

A Maximum Spanning Tree(MST) of G is a tree y
yCE
that maximizes the value Z(i,,.eyf("'” for every vertex in V
For each sentence x, we define the directed graph
Gy = (Vx, Ex)
Vx = {x, =root,xq, ..., Xn}
E,={(i,j):i#](,j) €0:n]x[1:n]}

12

Maximum Spanning Trees: Algorithm

Chu-Liu-Edmonds(G, s)
Graph G = (V, E)
Edge weight functions : £ — R
Let M = {(z*,z) : x € V,2" = argmax,, s(z’,z)}
Let Gy = (VL M)
If G\ has no cycles, then it 1s an MST: return G
Otherwise, find a cycle C' in Gy
Let G¢ = contract(G, C, 8)
Let y = Chu-Liu-Edmonds(G ¢, s)
Findavertexxz € Cs.t. (z',z) €y, (2",z) e C
return y UC — {(2",z)}
ontract(G = (V, E),C, s)
Let G be the subgraph of (G excluding nodes in C
Add a node ¢ to G¢ representing cycle C
ForzreV —C:3,cc(2',2) € E
Add edge (¢, x) to G with

s(c,z) = max,icc s(z',)

4, Forz eV —C:3Jucc(z,2')€EE
Add edge (z, ¢) to G¢ with
s(z,c) = max o [8(z,2") — s(a(z’),z') + 3(C)]
where a(v) 1s the predecessor of v in C
and 5(C) = ¥ e 8(a(v),v)

5. retumm G

W =B 00O U R W

Figure 3: Chiu-Liu-Edmonds algorithm for ﬁna;iéag maximum Spanning Trees in Directed Graph

Maximum Spanning Trees: Non-projective

f(,/

John

|

/ root \
20 AN 30

saaw

BN

Rlary

2 root

/

John

20 . /30
saw

30

5 root

John

Mary

Maximum Spanning Trees: projective

a dynamic programming table

CIsIItIli]

string start Ws Root
string ends Wi

represents the value of the highest scoring projective tree that
spans the string ws . . . wt and which is rooted at word wi |
where s si st

e.g. s=0, i=0
then C[0][n][0] would represent the value of highest scoring

dependency tree for an input sentence S = wOw1 . . . wn, which
s precisely the value we are interested in for the parsing problem

15

Maximum Spanning Trees: projective

Clil[i][i] = 0.0, forall0O<i<n

h Jk/l\ﬁ‘i " i%j

C d e

Figure 4.3: Illustration showing that every projective subgraph can be broken into a combination of
smaller adjacent subgraphs.

Maximum Spanning Trees: projective

i/\i i

VANWAN

S q q+1 ¢t forallq, j

>
j/\i
A A S t
S q g+1 t

Figure 4.4: CKY algorithm for projective dependency parsing.

CIsqIli1 + Clg + NI+ Awywyy ifj > i

Cls]lt]li] = max . ‘ o
{C[S][q][J] + Clg + LT + Awywy) i j <1

s=q<t,s<j=t

Als]lg]li1V Alg + 1] TV (wi, wj) i j > i

A i] =
] {A[S][q][j]UA[q+l][t][i]U(w;,wj) ifj <i

The final tree for a sentence Swis then G = (V ,A[O][n][O]).

Maximum Spanning Trees: projective

VAN

s q gq+1 t

JiN qgm Aﬁh AN* t

a d

Figure 4.5: Illustration showing Eisner’s projective dependency parsing algorithm relative to CKY.

E[s]t][0](O] E[s]t](1](0] E[s]t][0][1] E[s](tI[1](1]

N

Figure 4.6: Illustration showing each type of sublraph in the dynamic program table used in Eisner’s
algorithm.

13

Maximum Spanning Trees: projective

Eisner(S.I", \)
Sentence § = wowq ... w,
Arc weight parameters A(w;, wj) € A
Instantiate E[n][n][2][2] € R
Initialization: E[s][s][d][c] = 0.0 foralls,d,c
form:1..n
fors:1..n
[=5+m
if t > n then break

N U AW N =

% Create subgraphs with ¢ = 1 by adding arcs (step a-b in figure 4.5)
7 Els][t][0][1] = maxXs<4 < (Elsllgl[1][0] + Elg + 11[]1[O][0] + A(w,,w,))
8 Els][t][1][1] = maxs<4<: (Elsllgl[1]I0] + Elg + 11[]1[01[0] + A(wys,w;))

% Add corresponding left/right subgraphs (step b-c in figure 4.5)
9 Els][z]1[0][0] = maxs<4<: (Elsllgl[0][0] + Elqll#]1[0][1])
10 Els][z][1][0] = maxs<4< (Elsllgll11[1]+ Elqllz][1][0])

Pseudo-code for Eisner’s algorithm

Figure Adapted from Dependency Parsing(Kiibler et.al, 2009, p53)
19

Outline

e Basic Concepts
 Edge-based factorization
* Parsing Algorithm & Learning Algorithm

* Experiments and Results

20

Online Large Margin Learning: MIRA

Margin Infused Relaxed Algorithm (MIRA) (Crammer and Singer,2003;
Crammer et al,2003)

Training data: 7 = {(z¢, y¢) }ie1
l.wog=0; v=0; 2=0
2.forn:1..N

3. fort:1..T

WD) _ ()

nll

min

st. s(xe,yt) — s(xe,y') > Ly, y'),Vy' € dt(xy)
5. v=v+ with
6. =1+ 1
7.w=v/(N xT)

MIRA learning Algorithm

21

Online Large Margin Learning: single-best MIRA

The resulting online update

st s(xzg,yt) — s(xe.y') > Ly, ')
where y’ = arg max,, s(z¢, y')

Related

* k highest-scoring trees with small k (McDonald et al., 2005)
e averaged perceptron algorithm(Collins, 2002) using the single highest
scoring tree to update the weight vector

MIRA updates w to maximise the margin between the corrected tree
and the highest scoring tree leading to increasing accuracy

22

Online Large Margin Learning: factored MIRA

Factoring the output by edges to obtain the following statements

min Hw(”l) — wlt) H

s.t. s(l,7) — s(k,j) > 1

* the weight of the correct incoming edge to the word xj and the
weight of all other incoming edges must be separated by a
margin of 1

* the correct spanning tree and all incorrect spanning trees are

separated by a score at least as large as the number of incorrect
iIncoming edges.

23

Outline

» Basic Concepts
 Edge-based factorization
* Learning Algorithm & parsing algorithm

- Experiments and Results

24

Experiments

 Czech Prague Dependency Treebank(PDT) (Haji'c,1998;Haji"c et al.,2001)

* they used predefined training, developing and testing split of the data set

* automatically generated POS tags that are provided with the data

 features only relied on the reduced POS tag set from Collins et al. (1999)

¢ 23% of the sentences in the training, development and test sets have at

east one non-projective dependency

* less than 2% of total edges are actually non-projective

* therefore, handling non-projective edges correctly have a relatively small
effect on overall accuracy

* Czech A, consists of the entire PDT

* Czech B, includes only the 23% of sentences with at least one
non-projective dependency

25

Experiments

o

. COLL1999: The projective lexicalized phrase-structure

parser of Collins et al. (1999).

. N&N2005: The pseudo-projective parser of Nivre and

Nilsson (2005).

. McD2005: The projective parser of McDonald et al.

(2005) that uses the Eisner algorithm for both training and
testing. This system uses k-best MIRA with k=5.

Single-best MIRA: In this system we use the Chu-Liu-
Edmonds algorithm to fi nd the best dependency tree for
Single-best MIRA training and testing.

. Factored MIRA: Uses the quadratic set of constraints

based on edge factorization as described in Section 3.2.
We use the Chu-Liu-Edmonds algorithm to fi nd the best
tree for the test data.

20

Results

Czech-A Czech-B
Accuracy Complete Accuracy Complete
COLL1999 82.8 - - -
N&N2005 80.0 318 - -
McD2005 83.3 313 74.8 0.0
Single-best MIRA 84.1 322 81.0 14.9
Factored MIRA 844 323 81.5 14.3

lable 1: Dependency parsing results for Czech. Czech-B is the subset of Czech-A containing only
sentences with at least one non-projective dependency

English
Accuracy Complete
McD20P5 90.9 37.5
Single-best MIRA 90.2 332
Factored MIRA 90.2 323

lable 2: Dependency parsing results for English using spanning tree algorithms.

27

Summary

* formalize weighted dependency parsing as searching
for maximum spanning trees (MSTs) in directed graphs

* Parsing Algorithm
Non-projective: Chiu-Liu-Edmonds
Projective: Eisner’s Algorithm

* [earning Algorithm: single/tactored MIRA

* evaluated on the Prague Dependency Ireebank and
increasing in efficiency and accuracy

28

References

Kiibler, S., McDonald, R., & Nivre, J. (2009). Dependency parsing. Synthesis Lectures on
Human Language Technologies, 1(1), 1-127.

McDonald, R., Pereira, F., Ribarov, K., & Hajic, J. (2005). Non-projective dependency parsing
using spanning tree algorithms. In Proceedings of the conference on Human Language Technology
and Empirical Methods in Natural Language Processing (pp. 523-530). Association for
Computational Linguistics.

Nivre, J. (2009, August). Non-projective dependency parsing in expected linear time. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP: Volume 1-
Volume 1 (pp. 351-359). Association for Computational Linguistics.

29

Thank you!

Any Questions?

