
Finite State Morphology
Roark & Sproat (2007)

Dan Wells

27 March 2015

1 / 23



Outline

Finite State Transducers
Definition
Pros & cons
Composition

Morphological Analyses
Concatenative morphology
Prosodic circumscription
Non-concatenative morphology

Remaining Problems
Reduplication

2 / 23



Finite State Transducers

FST transducing sheep language to ghost language

I Q = {q0, q1, . . . , qN−1}: finite set of N states

I Σ: finite alphabet of input symbols

I ∆: finite alphabet of output symbols

I q0 ∈ Q: start state

I F ⊆ Q: set of final states

I δ(q, i): transition function between states

I σ(q, i): output function for a given state

3 / 23



Why use FSTs?

Advantages

I Efficient processing – linear in the length of the string for
deterministic FSTs

I Closed under concatenation, union, Kleene closure, inversion
and composition

Disadvantages

I Relatively limited generative power

4 / 23



Composition of FSTs

Composition: If a transducer T1 maps I1 to O1 and T2 maps I2 to
O2, then T1 ◦ T2 maps I1 directly onto O2

Roark & Sproat argue that composition of FSTs can be used to
describe (nearly) all kinds of morphological processes.

5 / 23



Basic example: English plurals

For simple concatenative morphology, we might like to combine a
stem A with an affix β to derive a new form Γ through string
concatenation:

Γ = A · β

However, it is often the case that stems and affixes undergo
changes upon combination.

Example

Plural marker in English surfaces as:

I [s] after unvoiced segments e.g. ‘cats’

I [z] after voiced segments e.g. ‘dogs’

I [1z] following apical fricatives and affricates
e.g. ‘horses’, ‘churches’

6 / 23



Basic example: English plurals

Instead, think in terms of a function β′ that takes a string as input
and returns that string concatenated with β:

β′ = Σ∗[ε : β]

This function defines a set of regular relations, and therefore also
an FST, and so we can reframe the process using composition:

Γ = A ◦ β′

7 / 23



Basic example: English plurals

We can define a transducer T which encodes the alternations in
the English plural marker. Then we can produce a plural form Π
from an English stem S and the plural suffix σ as follows:

Π = [S · σ] ◦ T

Which we can refactor as before:

Π = S ◦ [Σ∗[ε : σ]] ◦ T

If we then define a function σ′ as:

σ′ = [Σ∗[ε : σ]] ◦ T

Then our final derivation is:

Π = S ◦ σ′

8 / 23



Prosodic circumscription

Sometimes the domains of morphological processes are prosodically
specified e.g. infixation in Tagalog:

tawag → tumawag
‘call’ ‘call (perfective)’

The infix -um- attaches as a prefix to the remainder of a word
following any initial onset.

9 / 23



Prosodic circumscription

Prosodic circumscription formalises the definition of prosodic
entities in these rules.

A base B can be decomposed into a prosodically defined unit B:
and a residue B/ which are concatenated in some order:

B = B: · B/

Morphological operations can then be defined as applying to either
of these entities:

O: = O(B:) · B/

O/ = B: · O(B/)

10 / 23



Tagalog infixation

The definition of a prosodic unit can be implemented using an FST
which inserts a marker (e.g. >) at the appropriate point in a string.

For our Tagalog example, a transducer M can be defined as:

M = C?[ε :>]V Σ∗

Another transducer ι rewrites this marker to the infix -um- and
appends a perfective marker [+be] to the resulting word form:

ι = Σ∗[>: um]Σ∗[ε : +be]

The whole operation can then be applied to a stem A as:

Γ = A ◦M ◦ ι

11 / 23



Arabic templatic morphology

Verb stems in Arabic are derived under a non-concatenative
‘root-and-pattern’ system, with consonantal roots (e.g. ktb ‘notion
of writing’) being combined with characteristic vocalic patterns:

Pattern Template Verb stem Gloss

I C1aC2aC3 katab ‘wrote’
II C1aC2C2aC3 kattab ‘caused to write’
III C1aaC2aC3 kaatab ‘corresponded’
IV aC1C2aC3 aktab ‘caused to write’
VI taC1aaC2aC3 takaatab ‘wrote to each other’
VII nC1aC2aC3 nkatab ‘subscribed’
VIII C1taC2aC3 ktatab ‘copied’
X staC1C2aC3 staktab ‘caused to write’

12 / 23



Arabic templatic morphology

For a finite state account of this kind of morphological system, we
can begin by defining a root

P = ktb

and a set of CV templates

patterns = { τI = CaCaC,

τII = CaCCaC,

. . .

τX = [ε : sta]CCaC }

13 / 23



Arabic templatic morphology

We are then able to define a transducer corresponding to all of
these templates by taking the union:

τ =
⋃

p∈patterns
τp

We also need a transducer linking roots to templates. This has two
components:

I A transducer introducing optional vowels between consonants:

λ1 = C[ε : V ]∗C[ε : V ]∗C

I A transducer encoding a consonant doubling rule as in τII:

λ2 = Ci → CiCi

14 / 23



Arabic templatic morphology

Composing these linking transducers gives us λ = λ1 ◦ λ2, and
finally we can derive the entire set of related verb stems from the
consonantal root ktb by composing everything together:

Γ = P ◦ λ ◦ τ

15 / 23



Reduplication

Reduplication is problematic for finite state models because it
involves copying strings, and FSTs are not equipped to handle
unbounded copying.

It is possible, however, to account for bounded copying through
exhaustive enumeration of strings within the domain of the copying
operation.

I So we can do it, but it’s messy

16 / 23



Bounded reduplication in Gothic

Infinitive Gloss Preterite

falþan ‘fold’ fáıfalþ
haldan ‘hold’ háıhald
ga-staldan ‘possess’ ga-stáıstald
af-áikan ‘deny’ af-áıáik
máitan ‘cut’ máımáit
skáidan ‘divide’ skáıskáiþ

I Prefix a syllable of the form (A)Cáı to the stem

I Copy any onset of the stem to the C position and any
pre-onset appendix to the (A) position

I Closed class of verbs ⇒ bounded reduplication

17 / 23



Bounded reduplication in Gothic

But. . .

18 / 23



Unbounded reduplication in Bambara

wulu o wulu ‘whichever dog’
dog MARKER dog

wulu-nyinina o wulu-nyinina ‘whichever dog
dog searcher MARKER dog searcher searcher’

malo-nyinina-filèla o malo-nyinina-filèla ‘whichever rice
rice searcher watcher MARKER rice searcher watcher searcher watcher’

Where any number of compounds could serve as input to this
reduplication process, it becomes impossible to precompile all
possible copies as we did for Gothic.

19 / 23



Dealing with (bounded) reduplication

Roark & Sproat break the problem down into two components:

I Model prosodic constraints on base and reduplicated portion
e.g. for Gothic that reduplicated portion is of the form (A)Cáı

I Construct a copying component which verifies that the
reduplicated portion appropriately matches the base

20 / 23



Dealing with (bounded) reduplication

Prosodic constraint

Assume a transducer R which when composed with a base β
returns a prefixed version of β, and which also adds indices to the
elements in β which should match co-indexed elements in the
reduplicated prefix:

α = β ◦R = (A1)C2áıβ′

Here β′ is the indexed version of β.

Example: skáiþ ◦R = X1X2áıs1k2áiþ

21 / 23



Dealing with (bounded) reduplication

Copy filter

Checking the identity of co-indexed arcs can be achieved by
implementing a set of finite state filters, one for each index.
For bounded reduplication we can define a filter as below:⋃

i∈indices

⋃
s∈segments

[Σ∗siΣ∗siΣ∗]

22 / 23



Summary

I If the problem allows it, FSTs provide very efficient processing

I But limited generative power restricts the kinds of structures
and patterns able to be recognised

I Applications for morphological parsing and text normalisation
in speech synthesis

Any questions?

23 / 23


	Finite State Transducers
	Definition
	Pros & cons
	Composition

	Morphological Analyses
	Concatenative morphology
	Prosodic circumscription
	Non-concatenative morphology

	Remaining Problems
	Reduplication


