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Goals of this course (I)

• Examine the Big Questions of cognitive science 
through the lens of computational modelling
• Is cognition a collection of separate domain-specific abilities 

or an interacting whole?
• How much of cognition is innate?
• Are mental representations symbolic or distributed?
• Are mental processes based on rules or associations?
• To what extent are our cognitive abilities determined by our 

physical body and environment, i.e., grounded/embodied?
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Goals of this course (I)

Is cognition a collection of separate domain-specific 
abilities or an interacting whole?
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Goals of this course (I)

Pro-modularity:
• Itti, Koch & Niebur (1998): vision-specific features, no 
top-down control or outside information.
• Plunkett: labels are special
• Also: UG + parameters account of language learning

(Few of the papers we’ve read argue for strong modularity)
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Goals of this course (I)

Pro-domain-generality:
• Grammar learning

• Chunking and memory limitations (MOSAIC)
• Hierarchical structure (Bannard et al.)

• Categorization and development
• Categories emerge from statistics (French et al.)
• No special status for labels (Gliozzi)

[and more, e.g., shape bias] 5



Goals of this course (I)

How much of cognition is innate?

We can frame this with the bias-variance trade-off, so 
the question becomes “What is the bias?” 
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Goals of this course (I)

Higher bias: less sensitive to experience.

Extreme cases:
• Imprinting
• “Fixed action patterns” like egg-rolling
Examples:
• Itti et al. (1998): Static features and 
computations
• Quillian’s hierarchical categories.
• Another example: “function learning”, where 
models assume strong linearity bias. 7

Tinbergen, 1951; Lorenz, 1937



Goals of this course (I)

High-variance:
• Behavior/inferences highly sensitive to input.
• Accurate generalization requires more data.
Examples:
• French et al. (2004): categories due to distributional 
properties in environment, not prior knowledge.

• Gopnik et al. (2004): “causal maps” depend on 
experience plus small set of assumptions.

• Contrast: Michotte (1963).

• Many connectionist models.
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Goals of this course (I)

Are mental representations symbolic or distributed?
Are mental processes based on rules or associations?

• Connectionist models: Distributed [mostly]! Associations!

• [Traditional] algorithmic models: Rules!

• Probabilistic models: Varies – sometimes all of the above.

Not necessarily a hard distinction between these rules and 
associations: one can be mapped onto another.
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Goals of this course (I)

To what extent are our cognitive abilities 
grounded/embodied?

• We didn’t cover this much. Further reading:
• Clark (1999): Review in TiCS with a computational focus
• Wilson (2002): Popular & high-level review
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Goals of this course (2)

• Learn about different modelling approaches and how 
they relate to these Big Questions
• Connectionist
• Bayesian/probabilistic
• Algorithmic/mechanistic
• Dynamical systems
• Cognitive architectures
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Goals of this course (2)

Connectionist approaches
• Distributed, [kind of] domain-general.
• Biases not always clear
• Appeal to neural plausibility

• Some cases are more convincing than others

• New applied work (e.g., deep belief nets) and 
neurobiological results (imaging, multi-unit recording…)
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Goals of this course (2)

Bayesian/probabilistic approaches
• Usually expressed as computational-level models 
(Marr, 1982)

• Complementary to algorithmic and neural explanations

• Bias tends to be explicit.
• Though prior, likelihood, decision rules interact – may not be 

identifiable

• Associated with assumptions of rationality/optimality
• Recent trend: reconciling Bayesian models with time/memory 

limitations (e.g., Sanborn et. al, 2010); inference by sampling
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Goals of this course (2)

Algorithmic/mechanistic approaches
• Specify the processes by which mental 
representations are updated or constructed.
• Prior to connectionism, not many alternatives
• Bayesian and connectionist approaches entail 
algorithms, but often don’t commit to particular choices.
• Typically use rules and symbols.
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Goals of this course (2)

15(Beer,  2000; Roe et al., 2001; Thelen et al., 2001)

Figure: Beer, 2000

Dynamical systems approaches
• The mind as a system with state that 
evolves over time.
• Example: Elman’s simple recurrent 
networks (Grammar).

• Other examples (not covered):
• “Decision field” model of decision-making
• Infant perseverative reaching



Goals of this course (2)

Cognitive architecture approaches
• Frameworks rather than specific models.
• Most are mechanistic, but connectionist and 
probabilistic approaches exist.
• Like Bayesian or connectionist frameworks as a 
whole, architectures like ACT-R aren’t generally 
falsifiable.
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Goals of this course (2)

Cognitive architecture approaches
Examples:
• ACT-R 

• Used in Ragni et al. (Reasoning)
• Production system: rules fire when conditions are satisfied
• Current focus on neural correlates

• CHREST
• Used in Freudenthal et al. (Grammar)
• Used to model many phenomena in language
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Other themes & questions

The importance of representation
• Choices among representations (e.g., Lachter & 
Bever’s TRICS*, 1988) 
• Where do features/inputs come from?

• Active work in this field (e.g., Austerweil & Griffiths, 2013)

* “The representations it crucially supposes” 18



Other themes & questions

Other assumptions in models
• Objectives and loss functions

• Error/output representation in connectionist models
• Decision rules in Bayesian models

• Architectures of connectionist models
• Numbers of nodes? Connectivity? Learning rules? Input 

encoding?

• Priors and likelihood functions in Bayesian models
• Informative priors as testable theoretical claims
• Often justified, trained, or estimated independently
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Other themes & questions

What makes a model better?
• Fewer ad-hoc aspects/degrees of freedom
• Predictive accuracy
• Generality
• Resource demands & scalability

• Compatibility with other evidence, e.g., neuroscience

Not always simple! Parsimony is subjective; real 
predictions often elusive.
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Other themes & questions

What makes a model evaluation convincing?
• Scope: many data points, different kinds of evidence
• Specific predictions (not just post-hoc explanations)
• Examining assumptions
• Explicit comparisons to alternative models
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Discussion

Thoughts?
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