Word segmentation (example paper presentation)

Topics in Cognitive Modelling Jan. 29, 2013

> Sharon Goldwater School of Informatics University of Edinburgh sgwater@inf.ed.ac.uk

Word segmentation

 One of the first problems infants must solve when learning language: where are the word boundaries?

 May be similar to segmenting other kinds of sequences (e.g., actions) and visual scenes.

Cues to word segmentation

- · Infants make use of many different cues.
 - Phonotactics (which sound sequences are legal?)
 sound vs. ndsequen
 - Stress patterns
 - English usually stresses 1st syllable, French always the last.
 Etc.
- But specifics differ between languages, presenting a chicken-and-egg problem:

Statistical word segmentation

- In *any* language, words create statistical regularities in the sequences of sounds in the language.
- Experimental work (Saffran et al. 1996) focuses on transitional probabilities between syllables.
 - Idea: $P(syl_i | syl_{i-1})$ is often lower at word boundaries.

"pretty baby": P(by|ba) > P(ba|ty)

Experimental evidence

• Infants (and adults) can learn word-like units in a nonsense language based on statistics alone.

Lexicon:	Training stimulus:	
pabiku tibudo golatu daropi	 pabikudaropigolatut pabikudaropigolatupa aropitibudo	tibudodaropitibudogolatu bikutibudogolatupabikud

After training, test: Can subjects distinguish words (pabiku) vs. part-words (kudaro)?

Questions raised

- What statistical information is actually being used?
 Transitional probabilities or something else?
- Does the mind represent and compute with these statistics directly, or is it doing something else?
- Are listeners finding boundaries or finding words?
- · What happens with more realistic linguistic input?

6

8

10

Today's models

- PARSER (Perruchet and Vinter, 1998)
 - Humans are not tracking boundary statistics; segmentation results from general properties of attention, perception, and memory.
- Bayesian model (Goldwater, Griffiths, and Johnson, 2007)
 - What kind of information would be useful for segmenting from more realistic input? What would result, if humans use the information optimally?

7

9

- Both models focus on words, not boundaries.
- Both use little or no domain-specific information.

PARSER

 Main thesis: No special mechanism is needed for word segmentation; it results from interaction of perception and internal representation.

PARSER

- Main thesis: No special mechanism is needed for word segmentation; it results from interaction of perception and internal representation.
 - · Initially, input is perceived and chunked randomly into units.
 - Units are encoded in memory.
 - · Memory decays rapidly.
 - · Uncommon units disappear, common units are reinforced.
 - Units in memory influence perception and encoding of new input (input is segmented into existing units).

Representation

- Units are stored in "Percept Shaper" (PS): set of units and their weights (~strength in memory).
 - PS starts with set of primitive units (syllables), weight =1.
 - · Units with weight 1 or more can "shape perception"

ра	1
bi	1
ku	1
ti	1
bu	1
do	1

Processing

· On each cycle:

- One "percept" is seen: 1, 2, or 3 units in size.
- Add new unit to PS, or increment weight of existing unit.
- All units in PS decay, overlapping units interfere: decrease weights.

ра	1	Input:	pabikudaropigolatutibudodaropitibudo
bi	1		
ku	1	Percept:	pabi
ti	1		
bu	1		
do	1		
			11

Over time

- Frequent subsequences reinforce units in PS
- Infrequent subsequences disappear from PS.
- · Words are more frequent, so will dominate.

14

16

Experiments

- Experiment 1, 2, and 4 show:
 - Using same input stimulus as Saffran et al. experiments, PARSER learns the lexicon.
 - Can also do so while simulating lowered attention (like humans).
 - Predicts that different word lengths should present no problem (since then, this has been verified in humans).

Issues

- · Would it work on realistic input data?
 - Discussion suggests not (unless modified).
- Experiment 3: simulating infant study.
 - · Uses 4 lexical items instead of 6.
 - Performance actually goes down: pairs of words are found more commonly (*pabikutibudo*), interfere with single words.
 - Fixes this by changing model parameters "infants have more limited memory" but this is done post-hoc.
 - Still predicts that adults would have more trouble with 4 lexical items than 6.

Summary

- PARSER provides a mechanistic account of word segmentation based on general principles of attention, perception, and memory.
- No explicit tracking of statistics is needed.
- Works on experimental stimuli but might need modifications for realistic language.
- · Probably would work in other domains.
- Smaller vocabulary is harder than larger one??
- Lots of parameters how sensitive to these?

15

13

Bayesian model

- An ideal observer analysis: what words would be learned if statistical information is used optimally, and the learner assumes:
 - a) Words are defined as statistically independent units in the input (i.e., randomly ordered, as in experimental stimuli)?
 - b) Words are defined as units that help predict other units?
- Is (a) sufficient? I.e., what kind of prior does the learner need?

Two kinds of models

· Unigram model: words are independent.

Two kinds of models

- · Unigram model: words are independent.
- · Bigram model: words depend on other words.

Bayesian model

Assumes word w_i is generated as follows:

1. Is w_i a novel lexical item?

$$P(yes) = \frac{\alpha}{n + \alpha}$$
Fewer word types =
Higher probability
$$P(no) = \frac{n}{n + \alpha}$$

Bayesian model

Assume word w_i is generated as follows:

2. If novel, generate phonemic form $x_1...x_m$:

 $P(w_i = x_1 \dots x_m) = \prod_{i=1}^m P(x_i)$

If not, choose lexical identity of *w_i* from previously occurring words:

$$P(w_i = w) = \frac{n_w}{n}$$

Power law = Higher probability

Experiments

• Input: phonemically transcribed infant-directed speech.

- Optimal segmentation is found using a standard optimization algorithm (Gibbs sampling).
- Compare to bigram model (developed using similar maths).

Example output

Unigram model:	Bigram model:	
youwant to see thebook look theres aboy with his hat and adoggie you wantto lookatthis lookatthis havea drink okay now whatsthis whatisit look canyou take itout 	you want to see the book look theres a boy with his hat and a doggie you want to lookat this lookat this have a drink okay now whats this whats that whatis it look canyou take it out 	

· Quantitative comparison verifies bigram is better.

What's wrong with unigrams?

 Model assumes (falsely) that words have the same probability regardless of context.

P(that) = .024 P(that|whats) = .46 P(that|to) = .0019

- Positing amalgams allows the model to capture wordto-word dependencies.
- Paper argues that this is a general property of unigram models, not specific to this one.

Summary

- Good segmentations of naturalistic data can be found using fairly weak/domain-general prior assumptions.
 - Utterances are composed of discrete units (words).
 - · Units tend to be short.
 - Some units occur frequently, most do not.
 - Units tend to come in predictable patterns.
- More sophisticated use of information works better.
- But still possible that simpler learner is enough to start learning other language-specific cues.

Issues

- · No direct comparison to humans.
 - Is there evidence that human performance is consistent with Bayesian predictions? [Later paper suggests: yes]
 - · Are humans able to use bigram information?
- Algorithm iterates multiple times over the entire corpus – are more cognitively plausible algorithms possible?

Conclusion

- · Models have different emphasis:
 - PARSER: mechanistic explanation; experimental data.
 Bayesian model: ideal observer analysis; naturalistic data.
- But some similar ideas/conclusions:
 - Segmentation is about building a lexicon, not finding boundaries.

28

- · Built on domain-general principles.
- · Open questions:
 - · Relationship to adult speech processing?
 - · Multiple cues?

References

- Goldwater, S., Griffiths, T. L., and Johnson, M. (2007). Distributional cues to word segmentation: Context is important. Proceedings of the 31st Boston University Conference on Language Development, pp. 239-250. Somerville, MA: Cascadilla Press.
- Perruchet, P., and Vinter, A. (1998). PARSER: A model for word segmentation. *Journal of Memory and Language*, 39(2), 246-263.
- Saffran, J.R., Aslin, R.N., and Newport, E.L. (1996). Statistical learning by 8-month old infants. *Science*, 274, 1926-1928.

Bayesian learning

- Want to find an explanatory linguistic hypothesis that
 - · accounts for the observed data.
 - conforms to prior expectations.

$$P(h \mid d) \propto P(d \mid h) P(h)$$

Two kinds of models

Unigram model: words are independent.
 Generate a sentence by generating each word independently.

Two kinds of models

- Bigram model: words predict other words.
 - Generate a sentence by generating each word, conditioned on the previous word.

