Word segmentation
(example paper presentation)

Topics in Cognitive Modelling
Jan. 29, 2013

Sharon Goldwater
School of Informatics
University of Edinburgh
sgwater@inf.ed.ac.uk
Word segmentation

• One of the first problems infants must solve when learning language: where are the word boundaries?

• May be similar to segmenting other kinds of sequences (e.g., actions) and visual scenes.
Cues to word segmentation

- Infants make use of many different cues.
 - Phonotactics (which sound sequences are legal?)
 - sound vs. ndsequen
 - Stress patterns
 - English usually stresses 1st syllable, French always the last.
 - Etc.
- But specifics differ between languages, presenting a chicken-and-egg problem:
 - Learn typical stress
 - Learn some words
Statistical word segmentation

• In *any* language, words create statistical regularities in the sequences of sounds in the language.

• Experimental work (Saffran et al. 1996) focuses on *transitional probabilities* between syllables.
 • Idea: $P(syl_i | syl_{i-1})$ is often lower at word boundaries.

 “pretty baby”: $P(by|ba) > P(ba|ty)$
Experimental evidence

- Infants (and adults) can learn word-like units in a nonsense language based on statistics alone.

Lexicon:

pabiku
tibudo
golatu
daropi

Training stimulus:

...pabikudaropigolatutibudodaropitibudogolatu
pabikudaropigolatupabikutibudogolatupabikud
aropitibudo...

- After training, test: Can subjects distinguish *words* (pabiku) vs. *part-words* (kudaro)?
Questions raised

• What statistical information is actually being used?
 • Transitional probabilities or something else?
• Does the mind represent and compute with these statistics directly, or is it doing something else?
• Are listeners finding boundaries or finding words?
• What happens with more realistic linguistic input?
Today's models

• **PARSER** (Perruchet and Vinter, 1998)
 • Humans are not tracking boundary statistics; segmentation results from general properties of attention, perception, and memory.

• **Bayesian model** (Goldwater, Griffiths, and Johnson, 2007)
 • What kind of information would be useful for segmenting from more realistic input? What would result, if humans use the information optimally?

• Both models focus on words, not boundaries.

• Both use little or no domain-specific information.
Main thesis: No special mechanism is needed for word segmentation; it results from interaction of perception and internal representation.
Main thesis: No special mechanism is needed for word segmentation; it results from interaction of perception and internal representation.

- Initially, input is perceived and chunked randomly into units.
- Units are encoded in memory.
- Memory decays rapidly.
- Uncommon units disappear, common units are reinforced.
- Units in memory influence perception and encoding of new input (input is segmented into existing units).
Representation

- Units are stored in “Percept Shaper” (PS): set of units and their weights (~strength in memory).
 - PS starts with set of primitive units (syllables), weight =1.
 - Units with weight 1 or more can “shape perception”

<table>
<thead>
<tr>
<th>Unit</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa</td>
<td>1</td>
</tr>
<tr>
<td>bi</td>
<td>1</td>
</tr>
<tr>
<td>ku</td>
<td>1</td>
</tr>
<tr>
<td>ti</td>
<td>1</td>
</tr>
<tr>
<td>bu</td>
<td>1</td>
</tr>
<tr>
<td>do</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Processing

- On each cycle:
 - One “percept” is seen: 1, 2, or 3 units in size.
 - Add new unit to PS, or increment weight of existing unit.
 - All units in PS decay, overlapping units interfere: decrease weights.

Input: pabikudaropigolatutibudodaropitibudo...

Percept: pabi

<table>
<thead>
<tr>
<th>pa</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>bi</td>
<td>1</td>
</tr>
<tr>
<td>ku</td>
<td>1</td>
</tr>
<tr>
<td>ti</td>
<td>1</td>
</tr>
<tr>
<td>bu</td>
<td>1</td>
</tr>
<tr>
<td>do</td>
<td>1</td>
</tr>
</tbody>
</table>
...
Over time

- Frequent subsequences reinforce units in PS
- Infrequent subsequences disappear from PS.
- Words are more frequent, so will dominate.

<table>
<thead>
<tr>
<th>Word 1</th>
<th>Frequency 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa</td>
<td>1</td>
</tr>
<tr>
<td>bi</td>
<td>1</td>
</tr>
<tr>
<td>ku</td>
<td>1</td>
</tr>
<tr>
<td>ti</td>
<td>1</td>
</tr>
<tr>
<td>bu</td>
<td>1</td>
</tr>
<tr>
<td>do</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word 2</th>
<th>Frequency 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>pabiku</td>
<td>14.1</td>
</tr>
<tr>
<td>pabi</td>
<td>12.8</td>
</tr>
<tr>
<td>tibudo</td>
<td>11.8</td>
</tr>
<tr>
<td>bikutibudo</td>
<td>3.1</td>
</tr>
<tr>
<td>gola</td>
<td>3.0</td>
</tr>
<tr>
<td>pa</td>
<td>2.4</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word 3</th>
<th>Frequency 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>pabiku</td>
<td>67.4</td>
</tr>
<tr>
<td>tibudo</td>
<td>63.2</td>
</tr>
<tr>
<td>golatu</td>
<td>59.1</td>
</tr>
<tr>
<td>daropi</td>
<td>55.2</td>
</tr>
<tr>
<td>tibudopabiku</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Experiments

• Experiment 1, 2, and 4 show:
 • Using same input stimulus as Saffran et al. experiments, PARSER learns the lexicon.
 • Can also do so while simulating lowered attention (like humans).
 • Predicts that different word lengths should present no problem (since then, this has been verified in humans).
Issues

• Would it work on realistic input data?
 • Discussion suggests not (unless modified).

• Experiment 3: simulating infant study.
 • Uses 4 lexical items instead of 6.
 • Performance actually goes down: pairs of words are found more commonly (pabikutibudo), interfere with single words.
 • Fixes this by changing model parameters – “infants have more limited memory” – but this is done post-hoc.
 • Still predicts that adults would have more trouble with 4 lexical items than 6.
Summary

• PARSER provides a mechanistic account of word segmentation based on general principles of attention, perception, and memory.
• No explicit tracking of statistics is needed.
• Works on experimental stimuli but might need modifications for realistic language.
• Probably would work in other domains.
• Smaller vocabulary is harder than larger one??
• Lots of parameters – how sensitive to these?
Bayesian model

• An ideal observer analysis: what words would be learned if statistical information is used optimally, and the learner assumes:
 a) Words are defined as statistically independent units in the input (i.e., randomly ordered, as in experimental stimuli)?
 b) Words are defined as units that help predict other units?
• Is (a) sufficient? I.e., what kind of prior does the learner need?
Two kinds of models

- Unigram model: words are independent.

\[
P(w_1 \ldots w_n) = \prod_{i=1}^{n} P(w_i)
\]
Two kinds of models

- **Unigram model:** words are independent.

\[P(w_1 \ldots w_n) = \prod_{i=1}^{n} P(w_i) \]

- **Bigram model:** words depend on other words.

\[P(w_1 \ldots w_n) = \prod_{i=1}^{n} P(w_i|w_{i-1}) \]
Data:

lookatthedoggie
seethedoggie
shelookssofriendly
...

Hypotheses:

lookatthedoggie
seethedoggie
shelookssofriendly
...

look at the doggie see the doggie she looks so friendly
...

i like pizza
what about you
...

abc def gh
ijklmn opqrst uvwx
...

\[P(d|h)=1 \]

\[P(d|h)=0 \]
Bayesian segmentation

- Data: unsegmented corpus (transcriptions).
- Hypotheses: sequences of word tokens.

\[
P(h \mid d) \propto P(d \mid h) P(h)
\]

- Optimal solution is the segmentation with highest prior probability.

= 1 if concatenating words forms corpus, = 0 otherwise.

Encodes assumptions of learner.
Bayesian model

Assumes word w_i is generated as follows:

1. Is w_i a novel lexical item?

$$P(\text{yes}) = \frac{\alpha}{n + \alpha}$$

$$P(\text{no}) = \frac{n}{n + \alpha}$$

Fewer word types = Higher probability
Bayesian model

Assume word w_i is generated as follows:

2. If novel, generate phonemic form $x_1...x_m$:

$$P(w_i = x_1...x_m) = \prod_{i=1}^{m} P(x_i)$$

If not, choose lexical identity of w_i from previously occurring words:

$$P(w_i = w) = \frac{n_w}{n}$$

Shorter words = Higher probability

Power law = Higher probability
Experiments

- Input: phonemically transcribed infant-directed speech.

- Optimal segmentation is found using a standard optimization algorithm (Gibbs sampling).

- Compare to bigram model (developed using similar maths).

```
yuwanttusID6bUk
lUkD*z6b7wIThIzh&t
&nd6dOgi
yuwanttu1Uk&tDIIs
...
```
Example output

Unigram model:

you want to see the book
look there's a boy with his hat
and a doggie
you want to look at this
look at this
have a drink
okay now
what this
what that
what is it
look can you take it out
...

Bigram model:

you want to see the book
look there's a boy with his hat
and a doggie
you want to look at this
look at this
have a drink
okay now
what this
what that
what is it
look can you take it out
...

• Quantitative comparison verifies bigram is better.
What’s wrong with unigrams?

• Model assumes *(falsely)* that words have the same probability regardless of context.

\[
P(\text{that}) = .024 \quad P(\text{that}|\text{whats}) = .46 \quad P(\text{that}|\text{to}) = .0019
\]

• Positing amalgams allows the model to capture word-to-word dependencies.

• Paper argues that this is a general property of unigram models, not specific to this one.
Summary

• Good segmentations of naturalistic data can be found using fairly weak/domain-general prior assumptions.
 • Utterances are composed of discrete units (words).
 • Units tend to be short.
 • Some units occur frequently, most do not.
 • Units tend to come in predictable patterns.
• More sophisticated use of information works better.
 • But still possible that simpler learner is enough to start learning other language-specific cues.
Issues

• No direct comparison to humans.
 • Is there evidence that human performance is consistent with Bayesian predictions? [Later paper suggests: yes]
 • Are humans able to use bigram information?

• Algorithm iterates multiple times over the entire corpus – are more cognitively plausible algorithms possible?
Conclusion

• Models have different emphasis:
 • PARSER: mechanistic explanation; experimental data.
 • Bayesian model: ideal observer analysis; naturalistic data.

• But some similar ideas/conclusions:
 • Segmentation is about building a lexicon, not finding boundaries.
 • Built on domain-general principles.

• Open questions:
 • Relationship to adult speech processing?
 • Multiple cues?

Select randomly the size of the next percept (1, 2, or 3 shaping units)

Does this percept match with a unit below the shaping threshold?

YES

NO

Create this percept as a new unit

Assign a weight to the new unit and add weight to its 2 or 3 components

Add weight to this unit

Add weight to this unit and to its 2 or 3 components

Forgetting and interference (all units of the Percept Shaper)

Figure: Perruchet and Vinter (1998)
Bayesian learning

- Want to find an explanatory linguistic hypothesis that
 - accounts for the observed data.
 - conforms to prior expectations.

\[
P(h \mid d) \propto P(d \mid h)P(h)
\]
Two kinds of models

- Unigram model: words are independent.
 - Generate a sentence by generating each word independently.
Two kinds of models

- Bigram model: words predict other words.
 - Generate a sentence by generating each word, conditioned on the previous word.