
1/22/14

1

Artificial Neural Networks	

John Lee, Chris Lucas
School of Informatics

University of Edinburgh
{jlee,clucas2}@inf.ed.ac.uk

Topics in Cognitive Modelling
Jan. 21, 2014

Connectionism and ANNs	

•  Last time, we discussed connectionist philosophy:
•  “Biologically inspired” empiricism.
•  The brain has powerful general-purpose learning and

processing capabilities, due to its architecture: distributed
parallel processing and distributed representations.

•  These can be modelled using artificial neural networks.

•  Today, some more technical details about ANNs, and
a critique.

2

Artificial neural networks	

•  ANNs reproduce what Elman et al. (in Rethinking Innateness)
believe to be the critical aspects of neural structure:
•  Distributed computation using small computational elements.

•  Each element accesses only local information.

•  Information is represented in a distributed way.

•  Responses are nonlinear.

3
Figure: http://en.wikipedia.org/wiki/Artificial_neural_network

The perceptron	

•  Simple model of a neuron, building block of ANNs.

4

x1

x2

x3

y

w1

w2

w3

inputs

weights

output

Activation function F is usually
sigmoid, a smooth approximation
to a step function:

y=1

y=0

w0 bias

Example computation	

•  Does an object belong to category A or B?
•  Inputs: features of the objects (e.g., length, width)
•  Output: A or B

5

A
A

A

A

A A
A

B B
B

B

B

B

B

B
length

width

Example computation	

•  Does an object belong to category A or B?
•  Inputs: features of the objects (e.g., length, width)
•  Output: A or B

•  Perceptron can be trained to classify.
•  Given example inputs with labels, adjust weights to learn a

decision boundary (more on training later).
6

A
A

A

A

A A
A

B B
B

B

B

B

B

B
length

width

1/22/14

2

Limitations of the perceptron	

•  A single perceptron can only learn linear decision
boundaries.

•  What if we want to learn a more complex function?

7

A
A

A

A

A A
A

B B
B

B

B

B

B
B

length

width
A

A

A

A
A

A

A

A
A

Multilayer perceptron	

•  MLP networks have one or more hidden layers, which allows
them to learn more complex (non-linear) functions.

•  Probably the most commonly used feedforward network.

•  Usually each layer is fully connected to the next layer.

•  Types of functions that can be computed depends on number of
nodes, layers, and connections (and the activation function). 8

Representation	

•  Task: learn whether each animal is dangerous or not

9

Dog: [1 0 0 0 ... 0]
Cat: [0 1 0 0 ... 0]
Lion: [0 0 1 0 ... 0]
...
Rhino: [0 0 0 0 ... 1]

Dog: [0 1 1 1 ... 0]
Cat: [0 1 1 1 ... 1]
Lion: [1 1 1 0 ... 1]
...
Rhino: [1 0 0 0 ... 0]

•  Localized input representation:
•  One node active per input.

•  Distributed input representation:
•  Several nodes active per input.
•  Often feature-based.

•  Cf. http://cognet.mit.edu/library/erefs/mitecs/van_gelder1.html

Training	

•  MLPs are trained using backpropagation.
•  Minimizes the training error J = ½ ||d-y||2 between desired

output d and actual output y (assumes correct outputs are
known).

•  Uses gradient descent (requires differentiating the activation
function – that’s why sigmoid is preferred over step function).

Backpropagation sketch	

•  Repeat for each training example until convergence:
•  Compute the output y for this input.
•  Determine for each wij (weight from unit i to j) in output layer

how changing wij affects training error J, i.e. compute

•  Perform a similar computation for the weights in the previous
layer(s) to propagate the error signal backward.

•  Update all weights (η is the learning rate parameter):

For more details, see Elman et al. (1996) Ch. 2 or your favourite machine learning textbook.

Supervised vs. unsupervised	

•  Backpropagation requires training data with known
(input, output) pairs.

•  Normally, this means supervised training.
•  Ex. Categorization problem, with category labels provided.

•  Sometimes desired outputs may be available in the
world, without supervision.
•  Ex. Given view of object, predict alternate view. (Requires

supervised data for computer, but not for human with real
objects.)

•  Other types of networks usually used for
unsupervised learning problems.

12

1/22/14

3

Simple recurrent networks (Elman nets)	

•  Goal: predict the next input in a sequence (e.g.,
characters in a string of English text).

•  Prediction is based on current input, plus additional
input provided by context units.

13
Figure: Servan-Schreiber et al. (1991).

•  Hidden unit values are copied
into context units after each
timestep.

•  Trained using modified back-
propagation (backpropagation
through time).

•  Cf. http://www.stanford.edu/group/pdplab/pdphandbook/handbookch8.html

Self-organizing maps (Kohonen nets) 	

•  Goal: Nearby output units respond to similar inputs.
•  Project inputs into lower dimensional space.
•  Unsupervised clustering method.

14

•  Uses 2D layer of output units with
competitive learning.
•  Input is compared to weight vector of each

unit.
•  Most similar unit “wins”; weights are updated

to be even closer to input, and nearby units
are similarly updated.

•  Hence nearby locations in the map represent
inputs with similar properties.

Figure: Jain et al. (1996).

Summing Up	

•  ANNs are made of collections of perceptrons.
Important properties include:
•  Activation function: threshold, sigmoid, Gaussian, etc.
•  Connections: feedforward vs. feedback (recurrent), local and

global topology.
•  Representation of input and output.
•  Training algorithm: backpropagation, competitive learning, etc.

•  Different kinds of functions can be learned depending
on the choices made for these properties.

15

ANNs in cognitive modelling	

•  Examples of what ANN models may be used for:
•  Showing that rule-like behaviour (e.g., in language) is

possible without explicit mental representation of rules.
•  Showing that certain representations or features of the data

are useful for learning (e.g., by comparing success of
networks using different kinds of input).

•  Showing that X is learnable in principle (by exhibiting a
network that learns X).

16

Hypothetical question	

•  If we are trying to prove that X is learnable, why not
just use the most powerful possible ANN?
•  An ANN with a gazillion nodes and two jillion hidden layers

should be able to learn anything, right?*

17

*Technically, one hidden layer is enough for an MLP to learn any function, if we are
allowed to use arbitrary activation functions and enough nodes.

 Function learning	

•  Suppose we are trying to predict some response y
given an input x.
•  If I push with x force, how far (y) does an object move?
•  If I add x grams of salt, how good (y) does my food taste?

•  Observe some (x,y) pairs, want to learn a function to
correctly predict new (x,y) pairs (i.e., regression).

18

1/22/14

4

Function learning:	

•  But which function is right?

19

Function learning:	

•  But which function is right?

•  What about this one?

20 20

The bias-variance tradeoff	

•  Allowing the learner to posit complex functions (e.g.,
7-degree poly) means estimates have more variance.
•  Small perturbations in the data will cause large changes in

estimated function.
•  The learner can overfit the data, causing poor generalization.
•  More data is required to accurately estimate the function.

21

The bias-variance tradeoff	

•  Limiting possibilities to simpler function classes
(e.g. linear) reduces variance, but increases bias.
•  If the true function is in the allowed simpler class, then

overfitting is avoided and generalization improves.
•  But some functions cannot be learned, because not in the

simpler class.
•  If the true function is not in this allowed class, the fit will be

bad and probably so will generalization.
•  So there’s a limit to how far we can reduce both bias and

variance together.

22

No Free Lunch theorem (Wolpert, 1996)	

•  No learning algorithm is inherently “better” for all data.
•  An algorithm whose bias matches the distribution of the data

will learn faster and more accurately than other algorithms.
•  But this algorithm will not necessarily be good at learning from

other kinds of data.

23

Hypothetical question	

•  If we are trying to prove that X is learnable, why not
just use the most powerful possible ANN?
•  An ANN with a gazillion nodes and two jillion hidden layers

should be able to learn anything, right?
•  Well, yes, and that’s the problem. Since it can learn

anything, it will overfit the data it sees, and not generalize
well. It will also require a lot more data to get close to the
right solution, perhaps more than humans are exposed to.

24

1/22/14

5

Hypothetical question	

•  If we are trying to prove that X is learnable, why not
just use the most powerful possible ANN?
•  An ANN with a gazillion nodes and two jillion hidden layers

should be able to learn anything, right?
•  Well, yes, and that’s the problem. Since it can learn

anything, it will overfit the data it sees, and not generalize
well. It will also require a lot more data to get close to the
right solution, perhaps more than humans are exposed to.

•  So we are back to the fact that ANNs do and should
impose constraints on learning.
•  (Some form of innateness after all …)
•  But what exactly are these constraints?

25

Implicit vs. explicit constraints	

•  The constraints imposed by ANNs are implicit.
•  Different architectures can learn different kinds of things.
•  In many cases it’s hard to make really clear the relationship

between the architecture and what can be learned.

•  If we want to study human learning biases, maybe we
should be explicit about modelling them.
•  This is (part of) the philosophy of the Bayesian approach to

cognitive modelling... Stay tuned.

26

References	

Elman, J., Bates, E., Johnson, M., Karmiloff-Smith, A., Parisi, D., and
Plunkett, K. 1996. Rethinking innateness: a connectionist perspective
on development. Cambridge, MA: MIT Press.

Jain, A.K., Mao, J. and Mohiuddin, K.M. 1996. Artificial neural networks: a
tutorial. Computer 29(3), 31-44.

Servan-Schreiber, D., Cleeremans, A., and McClelland, J. L. 1991. Graded
state machines: The representation of temporal contingencies in simple
recurrent networks. Machine Learning, 7:161–193.

Thomas, M. S. C. and McClelland, J. L. 2008. Connectionist Models of
Cognition, pp. 23-30. In Handbook of Computational Psychology, Ron
Sun, (ed.) Cambridge: Cambridge University Press.

Wolpert, D. H., 1996. The lack of a priori distinctions between learning
algorithms. Neural Computation, 8(7), 1341–1390.

