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Connectionism and ANNs	


•  Last time, we discussed connectionist philosophy: 
•  “Biologically inspired” empiricism. 
•  The brain has powerful general-purpose learning and 

processing capabilities, due to its architecture: distributed 
parallel processing and distributed representations. 

•  These can be modelled using artificial neural networks. 

•  Today, some more technical details about ANNs, and  
a critique. 
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Artificial neural networks	


•  ANNs reproduce what Elman et al. (in Rethinking Innateness) 
believe to be the critical aspects of neural structure: 
•  Distributed computation using small computational elements. 

•  Each element accesses only local information. 

•  Information is represented in a distributed way. 

•  Responses are nonlinear. 

3 
Figure: http://en.wikipedia.org/wiki/Artificial_neural_network 

The perceptron	


•  Simple model of a neuron, building block of ANNs. 
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Activation function F is usually 
sigmoid, a smooth approximation 
to a step function: 
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Example computation	


•  Does an object belong to category A or B? 
•  Inputs: features of the objects (e.g., length, width) 
•  Output: A or B 
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Example computation	


•  Does an object belong to category A or B? 
•  Inputs: features of the objects (e.g., length, width) 
•  Output: A or B 

•  Perceptron can be trained to classify. 
•  Given example inputs with labels, adjust weights to learn a 

decision boundary (more on training later). 
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Limitations of the perceptron	


•  A single perceptron can only learn linear decision 
boundaries. 

•  What if we want to learn a more complex function? 
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Multilayer perceptron	


•  MLP networks have one or more hidden layers, which allows 
them to learn more complex (non-linear) functions. 

•  Probably the most commonly used feedforward network. 

•  Usually each layer is fully connected to the next layer. 

•  Types of functions that can be computed depends on number of 
nodes, layers, and connections (and the activation function). 8 

Representation	


•  Task: learn whether each animal is dangerous or not 
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Dog:  [1 0 0 0 ... 0] 
Cat:   [0 1 0 0 ... 0] 
Lion:  [0 0 1 0 ... 0] 
... 
Rhino: [0 0 0 0 ... 1] 

Dog:  [0 1 1 1 ... 0] 
Cat:   [0 1 1 1 ... 1] 
Lion:  [1 1 1 0 ... 1] 
... 
Rhino: [1 0 0 0 ... 0] 

•  Localized input representation: 
•  One node active per input. 

•  Distributed input representation: 
•  Several nodes active per input. 
•  Often feature-based. 

•  Cf. http://cognet.mit.edu/library/erefs/mitecs/van_gelder1.html  

Training	


•  MLPs are trained using backpropagation. 
•  Minimizes the training error J = ½ ||d-y||2 between desired 

output d and actual output y (assumes correct outputs are 
known). 

•  Uses gradient descent (requires differentiating the activation 
function – that’s why sigmoid is preferred over step function). 

Backpropagation sketch	


•  Repeat for each training example until convergence: 
•  Compute the output y for this input. 
•  Determine for each wij (weight from unit i to j) in output layer 

how changing wij affects training error J, i.e. compute 

•  Perform a similar computation for the weights in the previous 
layer(s) to propagate the error signal backward. 

•  Update all weights (η is the learning rate parameter): 

For more details, see Elman et al. (1996) Ch. 2 or your favourite machine learning textbook. 

Supervised vs. unsupervised	


•  Backpropagation requires training data with known 
(input, output) pairs. 

•  Normally, this means supervised training. 
•  Ex. Categorization problem, with category labels provided. 

•  Sometimes desired outputs may be available in the 
world, without supervision. 
•  Ex. Given view of object, predict alternate view.  (Requires 

supervised data for computer, but not for human with real 
objects.) 

•  Other types of networks usually used for 
unsupervised learning problems. 

12 



1/22/14 

3 

Simple recurrent networks (Elman nets)	


•  Goal: predict the next input in a sequence (e.g., 
characters in a string of English text). 

•  Prediction is based on current input, plus additional 
input provided by context units. 
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Figure: Servan-Schreiber et al. (1991). 

•  Hidden unit values are copied 
into context units after each 
timestep. 

•  Trained using modified back- 
propagation (backpropagation 
through time). 

•  Cf. http://www.stanford.edu/group/pdplab/pdphandbook/handbookch8.html  

Self-organizing maps (Kohonen nets) 	


•  Goal: Nearby output units respond to similar inputs. 
•  Project inputs into lower dimensional space. 
•  Unsupervised clustering method. 
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•  Uses 2D layer of output units with 
competitive learning. 
•  Input is compared to weight vector  of each 

unit. 
•  Most similar unit “wins”; weights are updated 

to be even closer to input, and nearby units 
are similarly updated. 

•  Hence nearby locations in the map represent 
inputs with similar properties. 

Figure: Jain et al. (1996). 

Summing Up	


•  ANNs are made of collections of perceptrons. 
Important properties include: 
•  Activation function: threshold, sigmoid, Gaussian, etc. 
•  Connections: feedforward vs. feedback (recurrent), local and 

global topology. 
•  Representation of input and output. 
•  Training algorithm: backpropagation, competitive learning, etc. 

•  Different  kinds of functions can be learned depending 
on the choices made for these properties. 
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ANNs in cognitive modelling	


•  Examples of what ANN models may be used for: 
•  Showing that rule-like behaviour (e.g., in language) is 

possible without explicit mental representation of rules. 
•  Showing that certain representations or features of the data 

are useful for learning (e.g., by comparing success of 
networks using different kinds of input). 

•  Showing that X is learnable in principle (by exhibiting a 
network that learns X). 

16 

Hypothetical question	


•  If we are trying to prove that X is learnable, why not 
just use the most powerful possible ANN? 
•  An ANN with a gazillion nodes and two jillion hidden layers 

should be able to learn anything, right?* 
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*Technically, one hidden layer is enough for an MLP to learn any function, if we are 
allowed to use arbitrary activation functions and enough nodes. 

 Function learning	


•  Suppose we are trying to predict some response y 
given an input x. 
•  If I push with x force, how far (y) does an object move? 
•  If I add x grams of salt, how good (y) does my food taste? 

•  Observe some (x,y) pairs, want to learn a function to 
correctly predict new (x,y) pairs (i.e., regression). 
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Function learning:	


•  But which function is right? 

19 

Function learning:	


•  But which function is right? 

•  What about this one? 
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The bias-variance tradeoff	


•  Allowing the learner to posit complex functions (e.g., 
7-degree poly) means estimates have more variance. 
•  Small perturbations in the data will cause large changes in 

estimated function. 
•  The learner can overfit the data, causing poor generalization. 
•  More data is required to accurately estimate the function. 
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The bias-variance tradeoff	


•  Limiting possibilities to simpler function classes  
(e.g. linear) reduces variance, but increases bias. 
•  If the true function is in the allowed simpler class, then 

overfitting is avoided and generalization improves. 
•  But some functions cannot be learned, because not in the 

simpler class.  
•  If the true function is not in this allowed class, the fit will be 

bad and probably so will generalization. 
•  So there’s a limit to how far we can reduce both bias and 

variance together. 
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No Free Lunch theorem (Wolpert, 1996)	


•  No learning algorithm is inherently “better” for all data. 
•  An algorithm whose bias matches the distribution of the data 

will learn faster and more accurately than other algorithms. 
•  But this algorithm will not necessarily be good at learning from 

other kinds of data. 
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Hypothetical question	


•  If we are trying to prove that X is learnable, why not 
just use the most powerful possible ANN? 
•  An ANN with a gazillion nodes and two jillion hidden layers 

should be able to learn anything, right? 
•  Well, yes, and that’s the problem.  Since it can learn 

anything, it will overfit the data it sees, and not generalize 
well.  It will also require a lot more data to get close to the 
right solution, perhaps more than humans are exposed to. 
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Hypothetical question	


•  If we are trying to prove that X is learnable, why not 
just use the most powerful possible ANN? 
•  An ANN with a gazillion nodes and two jillion hidden layers 

should be able to learn anything, right? 
•  Well, yes, and that’s the problem.  Since it can learn 

anything, it will overfit the data it sees, and not generalize 
well.  It will also require a lot more data to get close to the 
right solution, perhaps more than humans are exposed to. 

•  So we are back to the fact that ANNs do and should 
impose constraints on learning. 
•  (Some form of innateness after all …) 
•  But what exactly are these constraints? 
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Implicit vs. explicit constraints	


•  The constraints imposed by ANNs are implicit. 
•  Different architectures can learn different kinds of things. 
•  In many cases it’s hard to make really clear the relationship 

between the architecture and what can be learned. 

•  If we want to study human learning biases, maybe we 
should be explicit about modelling them. 
•  This is (part of) the philosophy of the Bayesian approach to 

cognitive modelling... Stay tuned. 
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