Acrtificial Neural Networks

Topics in Cognitive Modelling
Jan. 21, 2014

John Lee, Chris Lucas
School of Informatics
University of Edinburgh
{jlee,clucas2}@inf.ed.ac.uk

1/22/14

Connectionism and ANNs

« Last time, we discussed connectionist philosophy:
« “Biologically inspired” empiricism.

¢ The brain has powerful general-purpose learning and
processing capabilities, due to its architecture: distributed
parallel processing and distributed representations.

« These can be modelled using artificial neural networks.

¢ Today, some more technical details about ANNs, and
a critique.

Artificial neural networks

* ANNSs reproduce what Elman et al. (in Rethinking Innateness)
believe to be the critical aspects of neural structure:
« Distributed computation using small computational elements.
« Each element accesses only local information.
« Information is represented in a distributed way.

* Responses are nonlinear.

Hidden
Input
Output

O30
8§©

Figure: http:/en.wikipedia.org/wiki/Artficial_neural_network

The perceptron

¢ Simple model of a neuron, building block of ANNs.

Xq
X, y
output
s weights
inputs

] Activation function F is usually y=11-11
y=F W, + E WX, sigmoid, a smooth approximation
=l to a step function: y=0

Example computation

< Does an object belong to category A or B?
« Inputs: features of the objects (e.g., length, width)
¢ Output: AorB

width

Example computation

« Does an object belong to category A or B?

« Inputs: features of the objects (e.g., length, width)
¢ Output: Aor B

width

length

* Perceptron can be trained to classify.

« Given example inputs with labels, adjust weights to learn a
decision boundary (more on training later).

Limitations of the perceptron

* A single perceptron can only learn linear decision
boundaries.

* What if we want to learn a more complex function?

length

1/22/14

Multilayer perceptron

* MLP networks have one or more hidden layers, which allows
them to learn more complex (non-linear) functions.

Hidden
Input
Output

O—0
%@

« Probably the most commonly used feedforward network.
* Usually each layer is fully connected to the next layer.
« Types of functions that can be computed depends on number of

nodes, layers, and connections (and the activation function). 8

Representation

« Task: learn whether each animal is dangerous or not

¢ Localized input representation: Dog: [1000 ..

. 0]
.. 0]
. 0]

. 1]

. 0]

« One node active per input. ﬁiﬁ: Eg ; g g
I'?Hi.no: [0DO0O0O
« Distributed input representation: pog: 0111 ..
« Several nodes active per input. E?r:\: Eg 1 Jl' t -1

« Often feature-based.
Rhino: [1 0 0 O ...

« Cf. http://cognet.mit.edul/library/erefs/mitecs/van_gelder1.html

RS

0]

Training

¢ MLPs are trained using backpropagation.

» Minimizes the training error J = ¥; ||d-y||2 between desired
output d and actual output y (assumes correct outputs are
known).

« Uses gradient descent (requires differentiating the activation
function — that's why sigmoid is preferred over step function).

Backpropagation sketch

« Repeat for each training example until convergence:
« Compute the output y for this input.

» Determine for each w; (weight from unit / to j) in output layer
how changing w; affects training error J, i.e. compute

aJ
w,

« Perform a similar computation for the weights in the previous
layer(s) to propagate the error signal backward.

« Update all weights (n is the learning rate parameter):

W, =W, +1, o
v o=w
7 (A aw,

i

Supervised vs. unsupervised

For more details, see Elman et al. (1996) Ch. 2 or your favourite machine learning textbook.

* Backpropagation requires training data with known
(input, output) pairs.

¢ Normally, this means supervised training.
« Ex. Categorization problem, with category labels provided.

« Sometimes desired outputs may be available in the
world, without supervision.

« Ex. Given view of object, predict alternate view. (Requires
supervised data for computer, but not for human with real
objects.)

¢ Other types of networks usually used for
unsupervised learning problems.

Simple recurrent networks (Eiman nets)

« Goal: predict the next input in a sequence (e.g.,
characters in a string of English text).

« Prediction is based on current input, plus additional
input provided by context units.

« Hidden unit values are copied
into context units after each
timestep.

« Trained using modified back-
propagation (backpropagation
through time).

« Cf. http://www.stanford.edu/group/pdplab, 1dbook/t 18.html

Figure: Servan-Schreiber et al. (1991).

1/22/14

Self-organizing maps (Kohonen nets)

« Goal: Nearby output units respond to similar inputs.
« Project inputs into lower dimensional space.
¢ Unsupervised clustering method.

¢ Uses 2D layer of output units with

competitive learning.

« Input is compared to weight vector of each
unit.

« Most similar unit “wins”; weights are updated
to be even closer to input, and nearby units
are similarly updated.

« Hence nearby locations in the map represent
inputs with similar properties.
Figure: Jain et al. (1996).

Summing Up

« ANNSs are made of collections of perceptrons.
Important properties include:
« Activation function: threshold, sigmoid, Gaussian, etc.

« Connections: feedforward vs. feedback (recurrent), local and
global topology.

« Representation of input and output.

« Training algorithm: backpropagation, competitive learning, etc.
« Different kinds of functions can be learned depending

on the choices made for these properties.

ANNSs in cognitive modelling

« Examples of what ANN models may be used for:

« Showing that rule-like behaviour (e.g., in language) is
possible without explicit mental representation of rules.

« Showing that certain representations or features of the data
are useful for learning (e.g., by comparing success of
networks using different kinds of input).

« Showing that X is learnable in principle (by exhibiting a
network that learns X).

Hypothetical question

« If we are trying to prove that X is learnable, why not
just use the most powerful possible ANN?

« An ANN with a gazillion nodes and two jillion hidden layers
should be able to learn anything, right?*

*Technically, one hidden layer is enough for an MLP to learn any function, if we are
allowed to use arbitrary activation functions and enough nodes. 17

Function learning

« Suppose we are trying to predict some response y
given an input x.
« If | push with x force, how far (y) does an object move?
« If | add x grams of salt, how good (y) does my food taste?
« Observe some (x,y) pairs, want to learn a function to
correctly predict new (x,y) pairs (i.e., regression).

Function learning:

1/22/14

< But which function is right?

Function learning:

< But which function is right?

« What about this one?

20

The bias-variance tradeoff

< Allowing the learner to posit complex functions (e.g.,
7-degree poly) means estimates have more variance.

« Small perturbations in the data will cause large changes in
estimated function.

» The learner can overfit the data, causing poor generalization.
« More data is required to accurately estimate the function.

The bias-variance tradeoff

< Limiting possibilities to simpler function classes
(e.g. linear) reduces variance, but increases bias.

If the true function is in the allowed simpler class, then
overfitting is avoided and generalization improves.

But some functions cannot be learned, because not in the
simpler class.

If the true function is not in this allowed class, the fit will be
bad and probably so will generalization.

So there’s a limit to how far we can reduce both bias and
variance together.

22

No Free Lunch theorem woipert, 19%)

« No learning algorithm is inherently “better” for all data.

« An algorithm whose bias matches the distribution of the data
will learn faster and more accurately than other algorithms.

« But this algorithm will not necessarily be good at learning from
other kinds of data.

Hypothetical question

« If we are trying to prove that X is learnable, why not
just use the most powerful possible ANN?

« An ANN with a gazillion nodes and two jillion hidden layers
should be able to learn anything, right?

* Well, yes, and that’s the problem. Since it can learn
anything, it will overfit the data it sees, and not generalize
well. It will also require a lot more data to get close to the
right solution, perhaps more than humans are exposed to.

24

1/22/14

Hypothetical question

Implicit vs. explicit constraints

« If we are trying to prove that X is learnable, why not
just use the most powerful possible ANN?

« An ANN with a gazillion nodes and two jillion hidden layers
should be able to learn anything, right?

* Well, yes, and that'’s the problem. Since it can learn
anything, it will overfit the data it sees, and not generalize
well. It will also require a lot more data to get close to the
right solution, perhaps more than humans are exposed to.

* So we are back to the fact that ANNs do and should
impose constraints on learning.

* (Some form of innateness after all ...)

« But what exactly are these constraints?

¢ The constraints imposed by ANNs are implicit.
« Different architectures can learn different kinds of things.

« In many cases it's hard to make really clear the relationship
between the architecture and what can be learned.

 If we want to study human learning biases, maybe we
should be explicit about modelling them.

¢ This is (part of) the philosophy of the Bayesian approach to
cognitive modelling... Stay tuned.

26

References

Elman, J., Bates, E., Johnson, M., Karmiloff-Smith, A., Parisi, D., and
Plunkett, K. 1996. Rethinking innateness: a connectionist perspective
on development. Cambridge, MA: MIT Press.

Jain, A.K., Mao, J. and Mohiuddin, K.M. 1996. Artificial neural networks: a
tutorial. Computer 29(3), 31-44.

Servan-Schreiber, D., Cleeremans, A., and McClelland, J. L. 1991. Graded
state machines: The representation of temporal contingencies in simple
recurrent networks. Machine Learning, 7:161-193.

Thomas, M. S. C. and McClelland, J. L. 2008. Connectionist Models of
Cognition, pp. 23-30. In Handbook of Computational Psychology, Ron
Sun, (ed.) Cambridge: Cambridge University Press.

Wolpert, D. H., 1996. The lack of a priori distinctions between learning
algorithms. Neural Computation, 8(7), 1341-1390.

