Artificial Neural Networks

Topics in Cognitive Modelling Jan. 21, 2014

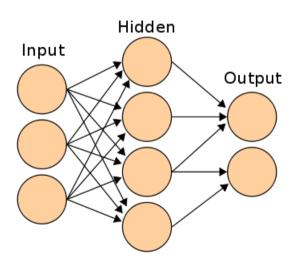
John Lee, Chris Lucas
School of Informatics
University of Edinburgh
{jlee,clucas2}@inf.ed.ac.uk

Connectionism and ANNs

- Last time, we discussed connectionist philosophy:
 - "Biologically inspired" empiricism.
 - The brain has powerful general-purpose learning and processing capabilities, due to its architecture: distributed parallel processing and distributed representations.
 - These can be modelled using artificial neural networks.
- Today, some more technical details about ANNs, and a critique.

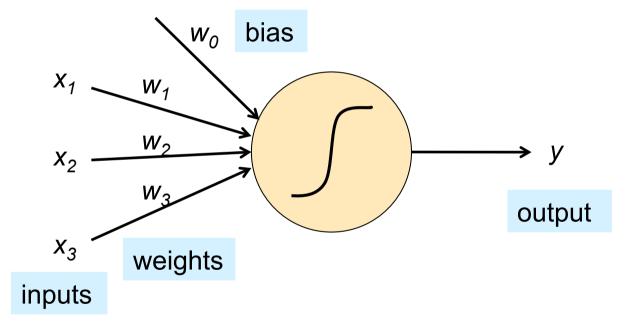
Artificial neural networks

- ANNs reproduce what Elman et al. (in *Rethinking Innateness*) believe to be the critical aspects of neural structure:
 - Distributed computation using small computational elements.
 - Each element accesses only local information.
 - Information is represented in a distributed way.
 - · Responses are nonlinear.



The perceptron

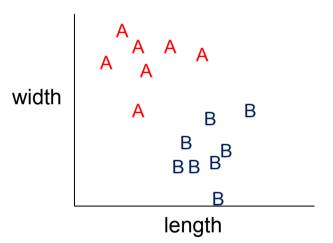
Simple model of a neuron, building block of ANNs.



$$y = F\left(w_0 + \sum_{i=1}^n w_i x_i\right)$$
 Activation function F is usually sigmoid, a smooth approximation to a step function:

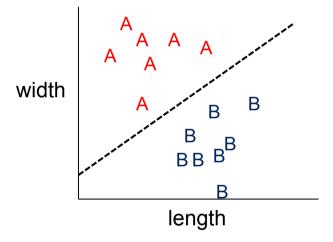
Example computation

- Does an object belong to category A or B?
 - Inputs: features of the objects (e.g., length, width)
 - Output: A or B



Example computation

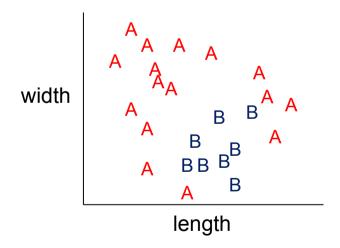
- Does an object belong to category A or B?
 - Inputs: features of the objects (e.g., length, width)
 - Output: A or B



- Perceptron can be trained to classify.
 - Given example inputs with labels, adjust weights to learn a decision boundary (more on training later).

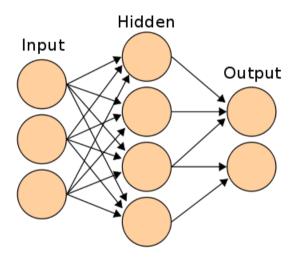
Limitations of the perceptron

- A single perceptron can only learn linear decision boundaries.
- What if we want to learn a more complex function?



Multilayer perceptron

 MLP networks have one or more hidden layers, which allows them to learn more complex (non-linear) functions.



- Probably the most commonly used feedforward network.
- Usually each layer is fully connected to the next layer.
- Types of functions that can be computed depends on number of nodes, layers, and connections (and the activation function).

Representation

- Task: learn whether each animal is dangerous or not
- Localized input representation:
 - One node active per input.

```
Dog: [1 0 0 0 0 ... 0]
Cat: [0 1 0 0 ... 0]
Lion: [0 0 1 0 ... 0]
...
Rhino: [0 0 0 0 ... 1]
```

- Distributed input representation:
 - Several nodes active per input.
 - Often feature-based.

```
Dog: [0 1 1 1 ... 0]
Cat: [0 1 1 1 ... 1]
Lion: [1 1 1 0 ... 1]
...
Rhino: [1 0 0 0 ... 0]
```

Cf. http://cognet.mit.edu/library/erefs/mitecs/van_gelder1.html

Training

- MLPs are trained using backpropagation.
 - Minimizes the training error $J = \frac{1}{2} ||\mathbf{d} \mathbf{y}||^2$ between desired output \mathbf{d} and actual output \mathbf{y} (assumes correct outputs are known).
 - Uses gradient descent (requires differentiating the activation function – that's why sigmoid is preferred over step function).

Backpropagation sketch

- Repeat for each training example until convergence:
 - Compute the output y for this input.
 - Determine for each w_{ij} (weight from unit i to j) in output layer how changing w_{ij} affects training error J, i.e. compute

$$\frac{\partial J}{\partial w_{ii}}$$

- Perform a similar computation for the weights in the previous layer(s) to propagate the error signal backward.
- Update all weights (η is the learning rate parameter):

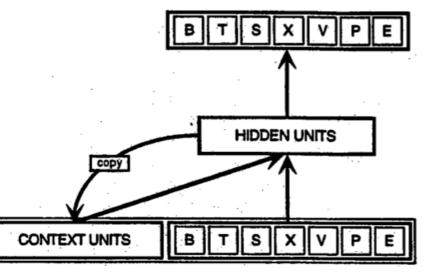
$$w_{ij} = w_{ij} + \eta \frac{\partial J}{\partial w_{ij}}$$

Supervised vs. unsupervised

- Backpropagation requires training data with known (input, output) pairs.
- Normally, this means supervised training.
 - Ex. Categorization problem, with category labels provided.
- Sometimes desired outputs may be available in the world, without supervision.
 - Ex. Given view of object, predict alternate view. (Requires supervised data for computer, but not for human with real objects.)
- Other types of networks usually used for unsupervised learning problems.

Simple recurrent networks (Elman nets)

- Goal: predict the next input in a sequence (e.g., characters in a string of English text).
- Prediction is based on current input, plus additional input provided by context units.
 - Hidden unit values are copied into context units after each timestep.
 - Trained using modified backpropagation (backpropagation through time).

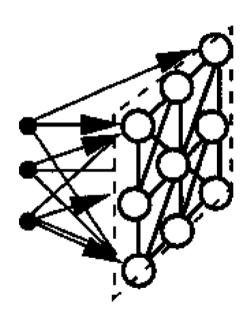


• Cf. http://www.stanford.edu/group/pdplab/pdphandbook/handbookch8.html

13

Self-organizing maps (Kohonen nets)

- Goal: Nearby output units respond to similar inputs.
 - Project inputs into lower dimensional space.
 - Unsupervised clustering method.
- Uses 2D layer of output units with competitive learning.
 - Input is compared to weight vector of each unit.
 - Most similar unit "wins"; weights are updated to be even closer to input, and nearby units are similarly updated.
 - Hence nearby locations in the map represent inputs with similar properties.



Summing Up

- ANNs are made of collections of perceptrons.
 Important properties include:
 - Activation function: threshold, sigmoid, Gaussian, etc.
 - Connections: feedforward vs. feedback (recurrent), local and global topology.
 - Representation of input and output.
 - Training algorithm: backpropagation, competitive learning, etc.
- Different kinds of functions can be learned depending on the choices made for these properties.

ANNs in cognitive modelling

- Examples of what ANN models may be used for:
 - Showing that rule-like behaviour (e.g., in language) is possible without explicit mental representation of rules.
 - Showing that certain representations or features of the data are useful for learning (e.g., by comparing success of networks using different kinds of input).
 - Showing that X is learnable in principle (by exhibiting a network that learns X).

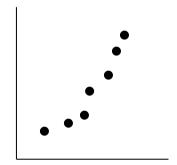
Hypothetical question

- If we are trying to prove that X is learnable, why not just use the most powerful possible ANN?
 - An ANN with a gazillion nodes and two jillion hidden layers should be able to learn anything, right?*

^{*}Technically, one hidden layer is enough for an MLP to learn any function, if we are allowed to use arbitrary activation functions and enough nodes.

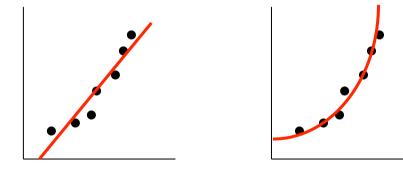
Function learning

- Suppose we are trying to predict some response y given an input x.
 - If I push with x force, how far (y) does an object move?
 - If I add x grams of salt, how good (y) does my food taste?
- Observe some (x,y) pairs, want to learn a function to correctly predict new (x,y) pairs (i.e., regression).



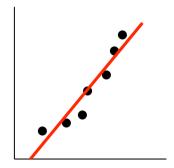
Function learning:

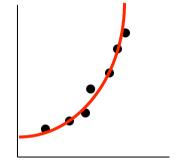
• But which function is right?



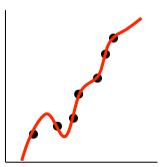
Function learning:

• But which function is right?





• What about this one?



The bias-variance tradeoff

- Allowing the learner to posit complex functions (e.g., 7-degree poly) means estimates have more variance.
 - Small perturbations in the data will cause large changes in estimated function.
 - The learner can overfit the data, causing poor generalization.
 - More data is required to accurately estimate the function.

The bias-variance tradeoff

- Limiting possibilities to simpler function classes (e.g. linear) reduces variance, but increases bias.
 - If the true function is in the allowed simpler class, then overfitting is avoided and generalization improves.
 - But some functions cannot be learned, because not in the simpler class.
 - If the true function is not in this allowed class, the fit will be bad and probably so will generalization.
 - So there's a limit to how far we can reduce both bias and variance together.

No Free Lunch theorem (Wolpert, 1996)

- No learning algorithm is inherently "better" for all data.
 - An algorithm whose bias matches the distribution of the data will learn faster and more accurately than other algorithms.
 - But this algorithm will not necessarily be good at learning from other kinds of data.

Hypothetical question

- If we are trying to prove that X is learnable, why not just use the most powerful possible ANN?
 - An ANN with a gazillion nodes and two jillion hidden layers should be able to learn anything, right?
 - Well, yes, and that's the problem. Since it can learn anything, it will overfit the data it sees, and not generalize well. It will also require a lot more data to get close to the right solution, perhaps more than humans are exposed to.

Hypothetical question

- If we are trying to prove that X is learnable, why not just use the most powerful possible ANN?
 - An ANN with a gazillion nodes and two jillion hidden layers should be able to learn anything, right?
 - Well, yes, and that's the problem. Since it can learn anything, it will overfit the data it sees, and not generalize well. It will also require a lot more data to get close to the right solution, perhaps more than humans are exposed to.
- So we are back to the fact that ANNs do and should impose constraints on learning.
 - (Some form of innateness after all ...)
 - But what exactly are these constraints?

Implicit vs. explicit constraints

- The constraints imposed by ANNs are implicit.
 - Different architectures can learn different kinds of things.
 - In many cases it's hard to make really clear the relationship between the architecture and what can be learned.
- If we want to study human learning biases, maybe we should be explicit about modelling them.
 - This is (part of) the philosophy of the Bayesian approach to cognitive modelling... Stay tuned.

References

- Elman, J., Bates, E., Johnson, M., Karmiloff-Smith, A., Parisi, D., and Plunkett, K. 1996. *Rethinking innateness: a connectionist perspective on development*. Cambridge, MA: MIT Press.
- Jain, A.K., Mao, J. and Mohiuddin, K.M. 1996. Artificial neural networks: a tutorial. *Computer* 29(3), 31-44.
- Servan-Schreiber, D., Cleeremans, A., and McClelland, J. L. 1991. Graded state machines: The representation of temporal contingencies in simple recurrent networks. *Machine Learning*, 7:161–193.
- Thomas, M. S. C. and McClelland, J. L. 2008. Connectionist Models of Cognition, pp. 23-30. In *Handbook of Computational Psychology*, Ron Sun, (ed.) Cambridge: Cambridge University Press.
- Wolpert, D. H., 1996. The lack of *a priori* distinctions between learning algorithms. *Neural Computation*, 8(7), 1341–1390.