

Semantic Web Systems Web Services – Part 2

Jacques Fleuriot School of Informatics

In the previous lecture

- Web Services (WS) can be thought of as Remote Procedure Calls.
- Messages from a client will specify the operation to be called, and will supply arguments for the operation.
- The service responds (typically) with the result of the operation on those arguments.
- The messages are standardly sent over HTTP as the body of a SOAP document; the SOAP header contains addressing information.
- Services are standardly described using WSDL. This specifies
 - types;
 - operations and their inputs and outputs;
 - a binding for each operation which specifies the allowed protocol and the service endpoints.

Semantic Web Systems: Web Services

In this lecture

- Semantic Web Services
- OWL-S view of services:
 - Service profile
 - Service model
 - Service grounding

Motivation for Semantic Web Services

- Standard Web Service technology provides virtualisation for distributed computing:
 - Abstraction from specific platforms and programming languages.
 - Promotes interoperability of diverse service implementations.
- But foundation for **automating** Web Services still lacking.
- Semantic WS intended to supplement standard WS.
- By providing semantically explicit metadata for WS:
 - Software can interpret descriptions of unfamiliar WS.
 - Carry out discovery, composition, etc.
- OWL-S builds on OWL to provide OWL descriptions of Services.

OWL Digression

- RDFS allows us to build simple class hierarchies for describing ontological structure.
- OWL (Web Ontology Language) gives us a richer framework:
 - Syntactically layered on RDF.
 - Uses theoretical framework of Description Logic (decidable fragment of First Order Logic).
 - A language for describing 'concepts' (classes of instances).
 - Provides negation, and standard notion of logical consistency.
 - Provides operators for defining classes as well as introducing primitive classes.
 - Provides a limited form of quantification.

6

Syntax and Semantics of DL Concepts

Simple Concepts

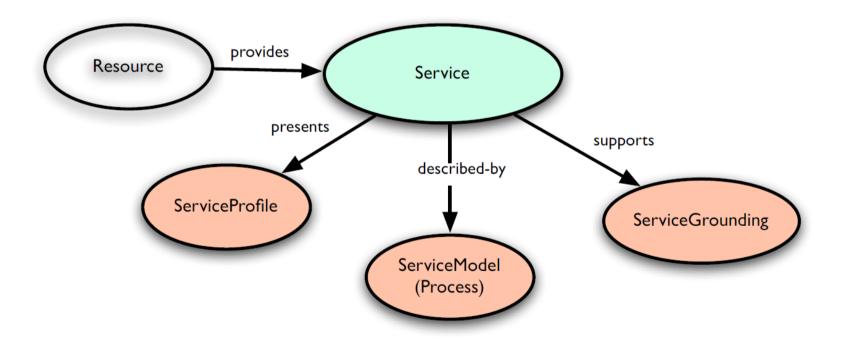
Giraffe {x | Giraffe(x)}

Composed Concepts		
Brother ⊔ Sister	{x Brother(x) V Sister(x)}	
Adult ⊓ Male	$x \mid Adult(x) \land Male(x)$	
- Married	{x ¬Married(x)}	

Subsumption	
Giraffe ⊑ Mammal	$\forall x (Giraffe(x) \rightarrow Mammal(x))$

Definitional	Equiva	lence
Dennitional		

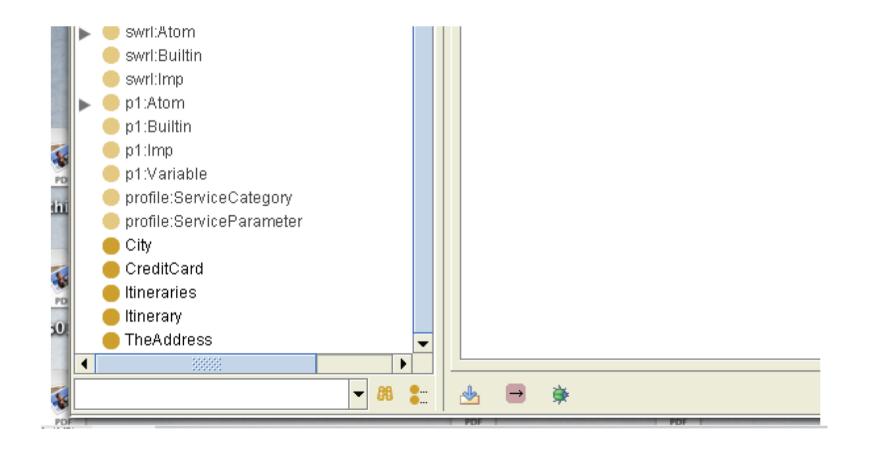
Sibling \doteq Brother \sqcup Sister $\forall x$ (Sibling(x) \leftrightarrow Brother(x) \lor Sister(x))



OWL-S View of Services

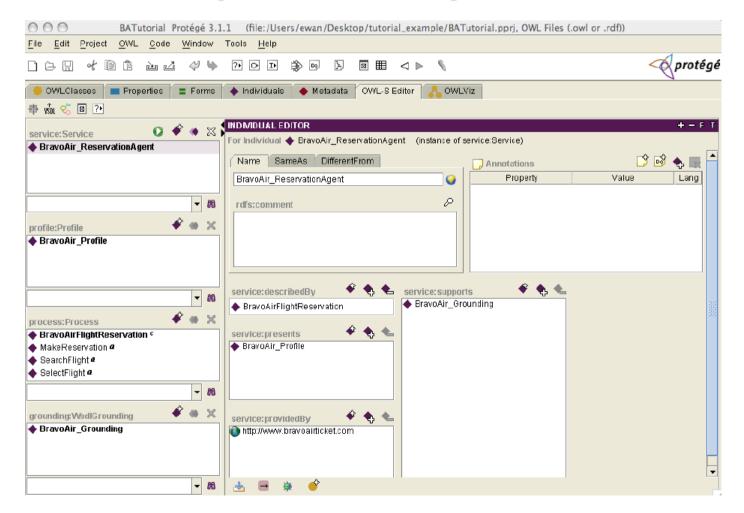
- Based on DAML (Darpa Agent Markup Language) and DAML-S.
- Provides an ontology for web services that consists of three sub-ontologies:
 - 1. Service Profile: How the service presents itself to the external world.
 - 2. Service Model: What the service does, and how the client interacts with it.
 - 3. Service Grounding: How the service is **realised** analogous to WSDL binding.

OWL-S Service Ontology



Service Model: Inputs and Outputs

- OWL-S functional description of services very similar to WSDL.
- Inputs and outputs specify the data transformation produced by the process.
- General notion of Parameter;
- The type of (values of) the Parameter is specified with a URI.
- Typically, this will be a pointer to an OWL class in a domain ontology.
 - Input,Output □ Parameter
- Parameters are associated with services via property hasParameter:
 - hasInput, hasOutput sub-properties of hasParameter



OWL-S Plugin for Protégé: Domain Ontology

OWL-S Plugin for Protégé: OWL-S Service

11

Service Model: Participants

- A process involves two or more agents.
- Required agents:
 - TheClient the service is described from the point of view of the client.
 - TheServer principal element of the service that the client deals with.

State Transformations

Question: Can Web Services change the world?

Changing the world with WS

Before invoking Amazon: your net assets are £999.00.

After invoking Amazon: your net assets are £000.00 but you are now the proud owner of a Widescreen 4K LED TV.

Preconditions and Effects

OWL-S distinguishes two aspects of WS:

- 1. Transforming information inputs and outputs
- 2. Transforming the world preconditions and effects

Example Preconditions

valid(creditcard, t0) \land limit(creditcard) \ge £999.00

Example Effect

(debt(creditcard, t1) = debt(creditcard, t0) - £999.00) \land own(i, TV, t1)

IOPEs

IOPE = Input, Output, Precondition, Effect

Expressing Preconditions and Effects

Expressing Truths about the World

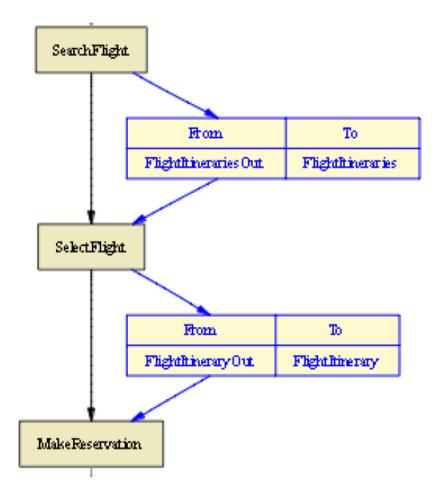
Preconditions and effects need to be stated in terms of a reasonably expressive logical language. By themselves, RDF and OWL do not provide a good basis for such a language.

Embedding Logic in OWL-S

- Logic and the Semantic Web rather messy!
 - http://www.w3.org/DesignIssues/Logic
 - Fensel & van Harmelen (2007)
- OWL-S tries to be non-committal about choice of logical language, makes a number of suggestions:
 - N3 Extensions beyond RDF for expressing logical rules.
 - RuleML http://www.ruleml.org and broader than deductive logic; XMLbased; somewhat orthogonal to other efforts.
 - SWRL (Semantic Web Rule Language) http://www.w3.org/Submission/ SWRL/ – embeds OWL assertions in Horn-clause rules.
 - SWRL-FOL http://www.daml.org/2004/11/fol/proposal extension of SWRL to arbitrary FOL formulas.
 - SPARQL: Partial specification of entailment over RDF(S) graphs.
- In OWL-S, expressions from these languages can be embedded as RDF literals.

The Process Ontology

- OWL-S divides processes into
 - Atomic, and
 - Composite.
- Various constructors are provided for assembling composite processes out of component ones, e.g.,
 - Sequence,
 - Choice,
 - Iterate, etc.
- A composite process represents behaviour a client can perform by sending and receiving messages.
- Inputs of an standalone atomic process must come directly from client;
- Inputs of components of a composite process may come from preceding steps.



OWL-S Plugin for Protégé: Process 1

	U. LA		a vatá a
	9 1		protégi
🔴 OWLClasses 🛛 🔳 Properties 🖉 🚍 F	orms	🔶 Individuals 🛛 🔶 Metadata 🛛 OWL-S Editor 🛛 💦 OWLViz	
🖶 🐝 🌝 🔟 ?•			
service:Service 🛛 🔍 🔷	i xi	Visual Editor Properties	
BravoAir_ReservationAgent			
		💌 🗁 Sequence	
		Perform Search Flight <i>a</i>	•
Im		Perform SelectFlight a	
	- 8	Startin	
profile:Profile 🛛 🔶 🖷	X		
BravoAir_Profile			
-		SeuchFlight	
		Record To	
	- 69	Flightlineraries Out Flightlineraries	
process:Drocess			
process:Process Tracess Tracess Tracess	~~	Selectright	
MakeReservation 4			
SearchFlight 4			
♦ SelectFlight <i>a</i>		Hom. To	
	- 88	FlightherayOut Flightherary	
a)			
grounding:WsdlGrounding 🛛 🔶 🍕	X	MakePeservation	
BravoAir_Orounding			
		Finish/Ora	
	-		Ţ
	- 88		

OWL-S Plugin for Protégé: Process 2

Abstracting over Composite Processes

- Composite processes can be viewed at a higher level of abstraction, as simple processes.
- Allows layering, i.e. composite processes can be incorporated as simple processes into further composites.

Service Profile

- Description of the service that can be used by registry or broker.
- Once a client has chosen to engage with a service, uses the Service Model, not the Profile.
- By default, Profile uses same IOPEs as the Model, but this is not mandatory.
- Can also include information such as Service Category and Quality of Service (QoS).

Grounding

- Mapping from abstract specification to a concrete specification of service;
- particularly, those service elements required for interaction.
- For OWL-S, main issue is relating inputs and outputs of atomic process to the input and outputs of a WSDL operation.
- WSDL by default specifies types using XML Schema,
- But OWL classes could be defined (using OWL namespace) in types section, or
- Referenced from within a WSDL operation definition using an owl-s-parameter attribute.

Summary

- OWL-S provides an upper ontology for web services:
 - Profile,
 - Process, and
 - Grounding.
- OWL-S allows service inputs and outputs to be typed in terms of OWL classes.
- Latter are typically drawn from a domain ontology.
- OWL-S supplements functional descriptions with preconditions and effects.
- The logic for these is embedded as RDF literals.
- Service Grounding is realised in terms of a mapping to WSDL.

Reading

- http://www.w3.org/Submission/OWL-S
- http://www.daml.org/services/owl-s/1.0/
- Bringing Semantics to Web Services with OWL-S, David Martin et al. (2007) World Wide Web Journal, Volume 10, Number 3, pp. 243-277.
- Unifying Reasoning and Search to Web Scale, Dieter Fensel and Frank van Harmelen (2007) Internet Computing, IEEE Volume 11, Issue 2, March-April, pp. 95–96.