Influence maximisation

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.

Course

Piazza forum up at:
— http://piazza.com/ed.ac.uk/fall2019/infr11124

Please join. We will post announcements etc there.

Its main purpose is as a forum for you to discuss course
material

— Ask questions and answer them. Post relevant things
— We will answers some questions, not all (and we may be wrong!)
— Discussand find answers yourself

— Ifyou are not sure if youranswer is correct, try to articulate the
doubtexactly, and the search foranswers!

Influence maximisation

Causing a large spread of
cascades

Viral marketing with limited
costs

Suppose We have a bUdget (8) Two nodes are the initial adopters
to activate k nodes to using
our products

Which k nodes should we
activate?

Model of operation

* Suppose each edge e, has an associated
probability p,,

— Represents strength or closeness of the relation

* That is, if u activates, v is likely to pick it up
with probability p,,

* Independent activation model

What happens when any one node
activates?

* Some neighbors
activate

* Some neighbors of
neighbors activate ...

* The contagion spreads
through a connected tree

* Every time we run process, it
will activate a random set of
nodes starting from the first
node

— It spreads through an edge

with the probability for that
edge

* For eachnodev, thereis a
corresponding activation set

S

e Questionis, which set of k
nodes do we want to select
so that the union of all S, is
largest

Vv

max |US, |

* Nalve strategy
— Find the activation set for each node
— Try each possible set of k starting nodes, and pick

the best n
* Number of k-sets is (k)

— Second step takes a long time when k is large
— Better ideas?

e The bad news

* Finding the best possible set of size k is NP-
hard

— Computationally intractable unless class P = class
NP

— There is unlikely to be a method much better than
the naive method to find the best set

Approximations

* |[n many problems, finding the “best” solution
is impractical

* |n many problems, a “good” solution is quite
useful

Approximations

e Usually, the quality of the best solution is
written as OPT

* Suppose we find an algorithm produces a
result of quality c*OPT

— It is called a c-approximation

* |n case of cascades

— A c-approximation guarantees reaching at least
c*OPT nodes

— E.g. 2 approximation reaches %2 of OPT nodes

Unknown optimals

 We do not know what OPT is!
* We do not know which set gives OPT

* However, the algorithm we design will
guarantee that the result is close to OPT

* For the maximizing activation problem, there
is a simple algorithm that gives an
approximation of

* To prove this, we will use a property called
submodularity
— A fundamental conceptin machine learning

 We will take a diversion to explain submodular
maximization through a more intuitive
example

e Then come back to cascade or influence
maximisation

Example: Camera coverage

Suppose you are placing
sensors/cameras to monitor a
region (eg. cameras, or
chemical sensors etc)

There are n possible camera
locations

Each camera can “see” a region

A region that is in the view of
one or more sensors is covered

With a budget of k cameras,
we want to cover the largest
possible area

— Function f: Area covered

Marginal gains

e Observe:

* Marginal coverage
depends on other
sensors in the
selection

Marginal gains

e Observe:

* Marginal coverage
depends on other
sensors in the
selection

Marginal gains

* Observe:

* Marginal coverage
depends on other
sensors in the
selection

* More selected
sensors means less
marginal gain from
each individual

Submodular functions
e Suppose function f(x)

represents the total benefit
of selecting x .
— Like area covered o
— And f(S) the benefit of
selecting set S
* Function fis submodular if:
SCT =

F(SU{z}) = f(5) = f(TU{z}) — F(T)

Submodular functions

 Means diminishing returns

* A selection of x gives .
smaller benefits if many o
other elements have been
selected

SCT =

F(SU{z}) = f(5) = f(TU{z}) — F(T)

Submodular functions

e Our Problem: select
locations set of size k that o
maximizes coverage o

* NP-Hard

SCT =

F(SU{z}) = f(5) = f(TU{z}) — F(T)

Greedy Approximation algorithm

Start with emptysetS=9
Repeat k times:

Find v that gives maximum marginal gain:

f(SUv}) = f(5)

Insertvinto S

* Observation 1: Coverage
function is submodular

* Observation 2: Coverage
function is monotone:

* Adding more sensors
always increases
coverage

SCT= f(S) < f(T)

* This is the same
guestion as influence
maximisation

* Which nodes to select,
to maximize coverage in
a domain

SCT= f(S) < f(T)

Theorem

* For monotone submodular functions, the

greedy algorithm produces a (1 B 1)
approximation ‘

* That is, the value f(S) of the final set is at least

1
(1 — —) -OPT
— [Nemhauser et al. 1978] €

 (Note thatthisalgorithm appliesto submodular maximzation problems,
notto minimization)

* So, selecting cameras by the greedy algorithm
gives a (1 — 1/e) approximation

Applications of submodular
optimization

Sensing the contagion
Place sensors to detect the spread

Find “representative elements”: Which blogs
cover all topics?

Machine learning selection of sets

Exemplar based clustering (eg: what are good
seed for centers?)

Image segmentation

Sensing the contagion

* Consider a different problem:

* A water distribution system may get
contaminatec

 We want to place sensors such that
contamination is detected

(c) effective placement (d) poor placement

Social sensing

Which blogs should | read? Which twitter accounts should |
follow?

— Catch big breakingstories early

Detect cascades

— Detect large cascades

— Detect them early...

— With few sensors

Can be seen as submodular optimization problem:
— Maximize the “quality” of sensing

Ref: Krause, Guestrin; Submodularity and its application in optimized information
gathering, TIST 2011

Representative elements

Take a set of Big data

Most of these may be
redundant and not so useful

What are some useful
“representative elements”?

— Good enough sample to E
understand the dataset

W] e
— Cluster representatives g n E g :
— Representative images E H H i h

— Few blogs that cover main
areas...

Recap

* Model: Independent
activation

— Contagion propagates along
edge e, with probability p,,

* Choose set of k starting nodes
to get max coverage

Recap

e Suppose we magically know
each activation set S, that will
be infected starting at node v

— Let us call this behavior X,

* Finding the best set of k nodes
(or equivalently sets S) is hard

 We are looking for
approximation

Recap

* Greedy algorithm:

— Selecting the set S, of max
marginal coverage

* Gives approximation

(1-1)-orr
€

Proof

OPT
|dea:

OPT is the max possible

At every step there is at

least one element that

covers at least 1/k of K
remaining:

— So 2 (OPT - current) * 1/k

Greedy selects one such
element

current

Proof

e |dea:

e At each step coverage
remaining becomes

| 1
k o

 Of what was remaining after
previous step

OPT

current

Proof

e After k steps, we have
remaining coverage of OPT

AN
k e

 Fraction of OPT covered:

(-2)

1/k
next

OPT

current

Proof of the main claim

At every step there is at least one element that covers
at least 1/k of remaining

Suppose the unknown set of elements that gives OPT
is given by set C, so OPT = f(C)

And suppose S is the set selected by greedy upto step i

Claim: At every step there is at least one element in
C —S. that covers 1/k of remaining: (f(C) —f(S,)) * 1/k

Proof of the main claim

* At every stepthereis at least one element
that covers 1/k of remaining: (f(C) —f(S;)) * 1/k

* At stepO: Suppose to the contrary, there is no
such element.

— Then C cannot give OPT: contradiction.

— So there is at least one such element

Proof of the main claim

* AtanystepS,

— We can add all k elements from C to get at least
OPT

— So, at least 1 element of C gives (f(C) — f(S;)) * 1/k

* Now consider Greedy

— If greedy chose s; at step i, that is because it gives
at least as much marginal gain as any element in C

* So, s;covers at least (f(C) — (S;))/k

Homework

* Write out the proof nicely!

Given a known behavior X, (we know
activation sets S,)

— Greedy algorithm gives approximation
But our model is probabilistic

Each possible behavior X; occurs with some
probability p.

We have to prove that the expected behavior
in the model is submodular, and therefore can
use a greedy algorithm

e Theorem:

— Positive linear combinations of monotone
submodular functions is monotone submodular

* We sum over all possible X;, weighted by their
probability p..

* Non-negative linear combinations of
submodular functions are submodular,

— Therefore the sum of all X is submodular
— (homework!)

Linear threshold model

* Linear contagion threshold model:

e Also submodular and monotone

e Proof ommitted.

— If you are interested, see additional reading:
Kempe, Kleinberg, Tardos; KDDO3

The algorithm

* Estimate behaviours X. and associated p.
— Through repeated simulations
— Current topic of research

e Use greedy algorithm to maximise expected
marginal gains

Observation on how the result is
approached

Topic & motivation:
— Social networks, advertising, adoption etc
Model

— Independent activation

* Assume we are given a graph. For each edge uv we have a probability p,, of
transmitting contagion etc

Problem statement

— Define influence maximisation: Maximise the number of nodes
activated

— Startingwith at most k nodes.
Result: Constantfactor (1 — 1/e) approximation algorithm.

Homework: write this out formally.

Problem with submodular
maximization

Can be expensive!

Each iteration costs O(n): have to check each element to find the
best

— May be more: “checks” are complexand depend on current selection
Problemin large datasets
Distributed cluster computation can help

— Splitdatainto multiple computers
— Compute and merge back results: Works for many types of problems

Ref: Mirzasoleiman, Karbasi, Sarkar, Krause; Distributed submodular maximization:
Finding representative elements in massive data. NIPS 2013.

Summary

e Approximation algorithms

e Critical in practical scenario, since “perfect” answer
may be elusive

— We can find approximations without even knowing the
OPT!

e Critical in Machine learning

— Learning is always approximate

— We never know the perfect answer for future

— Learning theory relies on probability and approximations
* Submodular optimisations are a powerful set of tools

