Influence maximisation

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2019.
Course

• Piazza forum up at:
 – http://piazza.com/ed.ac.uk/fall2019/infr11124

• Please join. We will post announcements etc there.

• Its main purpose is as a forum for you to discuss course material
 – Ask questions and answer them. Post relevant things
 – We will answers some questions, not all (and we may be wrong!)
 – Discuss and find answers yourself
 – If you are not sure if your answer is correct, try to articulate the doubt exactly, and the search for answers!
Influence maximisation

• Causing a large spread of cascades
• Viral marketing with limited costs
• Suppose we have a budget to activate \(k \) nodes to using our products
• Which \(k \) nodes should we activate?
Model of operation

• Suppose each edge e_{uv} has an associated probability p_{uv}
 – Represents strength or closeness of the relation

• That is, if u activates, v is likely to pick it up with probability p_{uv}

• Independent activation model
What happens when any one node activates?
• Some neighbors activate
• Some neighbors of neighbors activate ...
• The contagion spreads through a connected tree
• Every time we run process, it will activate a random set of nodes starting from the first node
 – It spreads through an edge with the probability for that edge
• For each node v, there is a corresponding activation set S_v
• Question is, which set of k nodes do we want to select so that the union of all S_v is largest

$$\max |\bigcup S_v|$$
• **Naïve strategy**
 – Find the activation set for each node
 – Try each possible set of k starting nodes, and pick the best
 • Number of k-sets is $\binom{n}{k}$
 – Second step takes a long time when k is large
 – Better ideas?
• The bad news
• Finding the best possible set of size k is NP-hard
 – Computationally intractable unless class $P = class NP$
 – There is unlikely to be a method much better than the naïve method to find the best set
Approximations

• In many problems, finding the “best” solution is impractical
• In many problems, a “good” solution is quite useful
Approximations

• Usually, the quality of the best solution is written as OPT

• Suppose we find an algorithm produces a result of quality $c\cdot\text{OPT}$
 – It is called a c-approximation

• In case of cascades
 – A c-approximation guarantees reaching at least $c\cdot\text{OPT}$ nodes
 – E.g. $\frac{1}{2}$ approximation reaches $\frac{1}{2}$ of OPT nodes
Unknown optimals

• We do not know what OPT is!
• We do not know which set gives OPT

• However, the algorithm we design will guarantee that the result is close to OPT
• For the maximizing activation problem, there is a simple algorithm that gives an approximation of

\[
\left(1 - \frac{1}{e}\right)
\]

• To prove this, we will use a property called *submodularity*
 – A fundamental concept in machine learning
• We will take a diversion to explain submodular maximization through a more intuitive example
• Then come back to cascade or influence maximisation
Example: Camera coverage

- Suppose you are placing sensors/cameras to monitor a region (e.g., cameras, or chemical sensors etc)
- There are n possible camera locations
- Each camera can “see” a region
- A region that is in the view of one or more sensors is covered
- With a budget of k cameras, we want to cover the largest possible area
 - Function f: Area covered
Marginal gains

- Observe:
- Marginal coverage depends on other sensors in the selection
Marginal gains

• Observe:
• Marginal coverage depends on other sensors in the selection
Marginal gains

• Observe:
• Marginal coverage depends on other sensors in the selection
• More selected sensors means less marginal gain from each individual
Submodular functions

• Suppose function $f(x)$ represents the total benefit of selecting x

 – Like area covered

 – And $f(S)$ the benefit of selecting set S

• Function f is submodular if:

 $$S \subseteq T \implies f(S \cup \{x\}) - f(S) \geq f(T \cup \{x\}) - f(T)$$
Submodular functions

• Means *diminishing returns*

• A selection of x gives smaller benefits if many other elements have been selected

\[S \subseteq T \implies f(S \cup \{x\}) - f(S) \geq f(T \cup \{x\}) - f(T) \]
Submodular functions

- Our Problem: select locations set of size k that maximizes coverage
- NP-Hard

\[
S \subseteq T \implies
\]
\[
f(S \cup \{x\}) - f(S) \geq f(T \cup \{x\}) - f(T)
\]
Greedy Approximation algorithm

- Start with empty set $S = \emptyset$
- Repeat k times:
- Find v that gives maximum marginal gain:
 $$f(S \cup \{v\}) - f(S)$$
- Insert v into S
• Observation 1: Coverage function is submodular
• Observation 2: Coverage function is monotone:
• Adding more sensors always increases coverage

\[S \subseteq T \Rightarrow f(S) \leq f(T) \]
• This is the same question as influence maximisation

• Which nodes to select, to maximize coverage in a domain

\[S \subseteq T \Rightarrow f(S) \leq f(T) \]
Theorem

• For monotone submodular functions, the greedy algorithm produces a \(\left(1 - \frac{1}{e}\right) \) approximation

• That is, the value \(f(S) \) of the final set is at least

\[
\left(1 - \frac{1}{e}\right) \cdot OPT
\]

— [Nemhauser et al. 1978]

• (Note that this algorithm applies to submodular maximization problems, not to minimization)
• So, selecting cameras by the greedy algorithm gives a \((1 - 1/e)\) approximation
Applications of submodular optimization

- Sensing the contagion
- Place sensors to detect the spread
- Find “representative elements”: Which blogs cover all topics?
- Machine learning selection of sets
- Exemplar based clustering (eg: what are good seed for centers?)
- Image segmentation
Sensing the contagion

- Consider a different problem:
- A water distribution system may get contaminated
- We want to place sensors such that contamination is detected

(c) effective placement
(d) poor placement
Social sensing

• Which blogs should I read? Which twitter accounts should I follow?
 – Catch big breaking stories early
• Detect cascades
 – Detect large cascades
 – Detect them early...
 – With few sensors
• Can be seen as submodular optimization problem:
 – Maximize the “quality” of sensing

• Ref: Krause, Guestrin; Submodularity and its application in optimized information gathering, TIST 2011
Representative elements

• Take a set of Big data
• Most of these may be redundant and not so useful
• What are some useful “representative elements”?
 – Good enough sample to understand the dataset
 – Cluster representatives
 – Representative images
 – Few blogs that cover main areas...
Recap

• Model: Independent activation
 – Contagion propagates along edge e_{uv} with probability p_{uv}

• Choose set of k starting nodes to get max coverage
Recap

• Suppose we magically know each activation set S_v that will be infected starting at node v
 – Let us call this behavior X_1

• Finding the best set of k nodes (or equivalently sets S) is hard

• We are looking for approximation
Recap

• Greedy algorithm:
 – Selecting the set S_v of max marginal coverage

• Gives approximation
 \[
 \left(1 - \frac{1}{e} \right) \cdot OPT
 \]
Proof

• Idea:
• OPT is the max possible
• At every step there is at least one element that covers at least $1/k$ of remaining:
 – So $\geq (OPT - \text{current}) \times 1/k$
• Greedy selects one such element
Proof

• Idea:

• At each step coverage remaining becomes

\[
\left(1 - \frac{1}{k}\right)
\]

• Of what was remaining after previous step
Proof

• After k steps, we have remaining coverage of OPT

\[
\left(1 - \frac{1}{k}\right)^k \approx \frac{1}{e}
\]

• Fraction of OPT covered:

\[
\left(1 - \frac{1}{e}\right)
\]
Proof of the main claim

• At every step there is at least one element that covers at least $1/k$ of remaining

• Suppose the unknown set of elements that gives OPT is given by set C, so $OPT = f(C)$

• And suppose S_i is the set selected by greedy upto step i

• Claim: At every step there is at least one element in $C - S_i$ that covers $1/k$ of remaining: $(f(C) - f(S_i)) \times \frac{1}{k}$
Proof of the main claim

• At every step there is at least one element that covers $1/k$ of remaining: $(f(C) - f(S_i)) \times 1/k$

• At step 0: Suppose to the contrary, there is no such element.
 – Then C cannot give OPT: contradiction.
 – So there is at least one such element
Proof of the main claim

• At any step S_i,
 – We can add all k elements from C to get at least OPT
 – So, at least 1 element of C gives $(f(C) – f(S_i)) \times \frac{1}{k}$

• Now consider Greedy
 – If greedy chose s_i at step i, that is because it gives at least as much marginal gain as any element in C
 • So, s_i covers at least $(f(C) – f(S_i))/k$
Homework

• Write out the proof nicely!
• Given a known behavior X_1 (we know activation sets S_v)
 – Greedy algorithm gives approximation
• But our model is probabilistic
• Each possible behavior X_i occurs with some probability p_i
• We have to prove that the expected behavior in the model is submodular, and therefore can use a greedy algorithm
• Theorem:
 – Positive linear combinations of monotone submodular functions is monotone submodular
• We sum over all possible X_i, weighted by their probability p_i.

• Non-negative linear combinations of submodular functions are submodular,
 – Therefore the sum of all X is submodular
 – (homework!)
Linear threshold model

• Linear contagion threshold model:

• Also submodular and monotone

• Proof ommitted.
 – If you are interested, see additional reading: Kempe, Kleinberg, Tardos; KDD03
The algorithm

• Estimate behaviours X_i and associated p_i
 – Through repeated simulations
 – Current topic of research
• Use greedy algorithm to maximise expected marginal gains
Observation on how the result is approached

• Topic & motivation:
 – Social networks, advertising, adoption etc
• Model
 – Independent activation
 • Assume we are given a graph. For each edge uv we have a probability p_{uv} of transmitting contagion etc
• Problem statement
 – Define influence maximisation: Maximise the number of nodes activated
 – Starting with at most k nodes.
• Result: Constant factor $(1 – 1/e)$ approximation algorithm.
• Homework: write this out formally.
Problem with submodular maximization

• Can be expensive!
• Each iteration costs $O(n)$: have to check each element to find the best
 – May be more: “checks” are complex and depend on current selection
• Problem in large datasets
• Distributed cluster computation can help
 – Split data into multiple computers
 – Compute and merge back results: Works for many types of problems

• Ref: Mirzasoleiman, Karbasi, Sarkar, Krause; Distributed submodular maximization: Finding representative elements in massive data. NIPS 2013.
Summary

• Approximation algorithms
• Critical in practical scenario, since “perfect” answer may be elusive
 – We can find approximations without even knowing the OPT!
• Critical in Machine learning
 – Learning is always approximate
 – We never know the perfect answer for future
 – Learning theory relies on probability and approximations
• Submodular optimisations are a powerful set of tools