
Influence	maximisation

Social	and	Technological	Networks

Rik Sarkar

University	of	Edinburgh,	2019.

Course
• Piazza	forum	up	at:

– http://piazza.com/ed.ac.uk/fall2019/infr11124

• Please	join.	We	will	post	announcements	etc there.	

• Its	main	purpose	is	as	a	forum	for	you	to	discuss	course	
material
– Ask	questions	and	answer	them.	Post	relevant	things
– We	will	answers	some	questions,	not	all	(and	we	may	be	wrong!)
– Discuss	and	find	answers	yourself
– If	you	are	not	sure	if	your	answer	is	correct,	try	to	articulate	the	

doubt	exactly,	and	the	search	for	answers!

Influence	maximisation

• Causing	a	large	spread	of	
cascades

• Viral	marketing	with	limited	
costs

• Suppose	we	have	a	budget	
to	activate	k	nodes	to	using	
our	products

• Which	k	nodes	should	we	
activate?

Model	of	operation

• Suppose	each	edge	euv has	an	associated	
probability	puv
– Represents	strength	or	closeness	of	the	relation

• That	is,	if	u	activates,	v	is	likely	to	pick	it	up	
with	probability	puv

• Independent	activation	model

What	happens	when	any	one	node	
activates?	

• Some	neighbors	
activate

• Some	neighbors	of	
neighbors	activate	…

• The	contagion	spreads	
through	a	connected	tree

• Every	time	we	run	process,	it	
will	activate	a	random	set	of	
nodes	starting	from	the	first	
node
– It	spreads	through	an	edge	
with	the	probability	for	that	
edge

• For	each	node	v,	there	is	a	
corresponding	activation	set	
Sv

• Question	is,	which	set	of	k	
nodes	do	we	want	to	select	
so	that	the	union	of	all	Sv is	
largest	

max |[Sv|
<latexit sha1_base64="C4mpSlzvLlsBFNviUL7p9HAWIdY=">AAACBXicbVA7T8MwGHR4lvIKMMJgUSExVUlBgrGChbEI+pCaKHJcp7VqO5HtVFRRFxb+CgsDCLHyH9j4NzhtBmg5ydL57j7Z34UJo0o7zre1tLyyurZe2ihvbm3v7Np7+y0VpxKTJo5ZLDshUoRRQZqaakY6iSSIh4y0w+F17rdHRCoai3s9TojPUV/QiGKkjRTYRx5HD5nHTEZDD6cJvAtG0JP5fRLYFafqTAEXiVuQCijQCOwvrxfjlBOhMUNKdV0n0X6GpKaYkUnZSxVJEB6iPukaKhAnys+mW0zgiVF6MIqlOULDqfp7IkNcqTEPTZIjPVDzXi7+53VTHV36GRVJqonAs4eilEEdw7wS2KOSYM3GhiAsqfkrxAMkEdamuLIpwZ1feZG0alX3rFq7Pa/Ur4o6SuAQHINT4IILUAc3oAGaAINH8AxewZv1ZL1Y79bHLLpkFTMH4A+szx+ecJil</latexit>

• Naïve	strategy
– Find	the	activation	set	for	each	node
– Try	each	possible	set	of	k	starting	nodes,	and	pick	
the	best
• Number	of	k-sets	is	

– Second	step	takes	a	long	time	when	k	is	large	
– Better	ideas?	

✓
n

k

◆

<latexit sha1_base64="9ZpmfOhpDpYjXdsB/l0mxLIVv98=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOTTjJkdmadmQ2EJd/hxYMiXv0Yb/6Nk8dBEwsaiqpuuruiRHBjff/bW1vf2Nzazu3kd/f2Dw4LR8d1o1LNsMaUULoZUYOCS6xZbgU2E400jgQ2ouHd1G+MUBuu5KMdJxjGtC95jzNqnRRmkrTZQCmDZDjpFIp+yZ+BrJJgQYqwQLVT+Gp3FUtjlJYJakwr8BMbZlRbzgRO8u3UYELZkPax5aikMZowmx09IedO6ZKe0q6kJTP190RGY2PGceQ6Y2oHZtmbiv95rdT2bsKMyyS1KNl8US8VxCoyTYB0uUZmxdgRyjR3txI2oJoy63LKuxCC5ZdXSb1cCi5L5YerYuV2EUcOTuEMLiCAa6jAPVShBgye4Ble4c0beS/eu/cxb13zFjMn8Afe5w+Db5Hu</latexit>

• The	bad	news
• Finding	the	best	possible	set	of	size	k	is	NP-
hard
– Computationally	intractable	unless	class	P	=	class	
NP

– There	is	unlikely	to	be	a	method	much	better	than	
the	naïve	method	to	find	the	best	set

Approximations

• In	many	problems,	finding	the	“best”	solution	
is	impractical

• In	many	problems,	a	“good”	solution	is	quite	
useful

Approximations

• Usually,	the	quality	of	the	best	solution	is	
written	as	OPT

• Suppose	we	find	an	algorithm	produces	a	
result	of	quality	c*OPT
– It	is	called	a	c-approximation

• In	case	of	cascades
– A	c-approximation	guarantees	reaching	at	least	
c*OPT	nodes

– E.g.	½		approximation	reaches	½	of	OPT	nodes

Unknown	optimals

• We	do	not	know	what	OPT	is!
• We	do	not	know	which	set	gives	OPT

• However,	the	algorithm	we	design	will	
guarantee	that	the	result	is	close	to	OPT

• For	the	maximizing	activation	problem,	there	
is	a	simple	algorithm	that	gives	an	
approximation	of	

• To	prove	this,	we	will	use	a	property	called	
submodularity
– A	fundamental	concept	in	machine	learning

✓
1� 1

e

◆

• We	will	take	a	diversion	to	explain	submodular
maximization	through	a	more	intuitive	
example

• Then	come	back	to	cascade	or	influence	
maximisation

Example:	Camera	coverage
• Suppose	you	are	placing	
sensors/cameras	to	monitor	a	
region	(eg.	cameras,	or	
chemical	sensors	etc)

• There	are	n	possible	camera	
locations

• Each	camera	can	“see”	a	region
• A	region	that	is	in	the	view	of	
one	or	more	sensors	is	covered

• With	a	budget	of	k	cameras,	
we	want	to	cover	the	largest	
possible	area
– Function	f:	Area	covered

Marginal	gains

• Observe:
• Marginal	coverage	
depends	on	other	
sensors	in	the	
selection

Marginal	gains

• Observe:
• Marginal	coverage	
depends	on	other	
sensors	in	the	
selection

Marginal	gains

• Observe:
• Marginal	coverage	
depends	on	other	
sensors	in	the	
selection

• More	selected	
sensors	means	less	
marginal	gain	from	
each	individual

Submodular functions
• Suppose	function	f(x)	
represents	the	total	benefit	
of	selecting	x
– Like	area	covered
– And	f(S)	the	benefit	of	
selecting	set	S

• Function	f	is	submodular if:	

f(S [{x})� f(S) � f(T [{x})� f(T)

S ✓ T =)

Submodular functions

• Means	diminishing	 returns
• A	selection	of	x	gives	
smaller	benefits	if	many	
other	elements	have	been	
selected

f(S [{x})� f(S) � f(T [{x})� f(T)

S ✓ T =)

Submodular functions

• Our	Problem:	select	
locations	set	of	size	k	that	
maximizes	coverage

• NP-Hard

f(S [{x})� f(S) � f(T [{x})� f(T)

S ✓ T =)

Greedy	Approximation	algorithm

• Start	with	empty	set	S	=	∅
• Repeat	k	times:	
• Find	v	that	gives	maximum	marginal	gain:

• Insert	v	into	S
f(S [{v})� f(S)

• Observation	1:	Coverage	
function	is	submodular

• Observation	2:	Coverage	
function	is	monotone:

• Adding	more	sensors	
always	increases	
coverage

S ✓ T) f(S)  f(T)

• This	is	the	same	
question	as	influence	
maximisation

• Which	nodes	to	select,	
to	maximize	coverage	in	
a	domain

S ✓ T) f(S)  f(T)

Theorem

• For	monotone	submodular functions,	the	
greedy	algorithm	produces	a															
approximation

• That	is,	the	value	f(S)	of	the	final	set	is	at	least	

– [Nemhauser et	al.	1978]

• (Note	that	this	algorithm	applies	to	submodularmaximzationproblems,	
not	to	minimization)

✓
1� 1

e

◆

✓
1� 1

e

◆
·OPT

• So,	selecting	cameras	by	the	greedy	algorithm	
gives	a	(1	– 1/e)	approximation

Applications	of	submodular
optimization

• Sensing	the	contagion
• Place	sensors	to	detect	the	spread
• Find	“representative	elements”:	Which	blogs	
cover	all	topics?

• Machine	learning	selection	of	sets
• Exemplar	based	clustering	(eg:	what	are	good	
seed	for	centers?)

• Image	segmentation

Sensing	the	contagion

• Consider	a	different	problem:	
• A	water	distribution	system	may	get	
contaminated

• We	want	to	place	sensors	such	that	
contamination	is	detected

Social	sensing
• Which	blogs	should	I	read?	Which	twitter	accounts	should	I	

follow?
– Catch	big	breaking	stories	early

• Detect	cascades
– Detect	large	cascades	
– Detect	them	early…
– With	few	sensors

• Can	be	seen	as	submodular optimization	problem:
– Maximize	the	“quality”	of	sensing

• Ref:	Krause,	Guestrin;	Submodularity and	its	application	in	optimized	 information	
gathering,	TIST	2011

Representative	elements

• Take	a	set	of	Big	data
• Most	of	these	may	be	
redundant	and	not	so	useful

• What	are	some	useful	
“representative	elements”?	
– Good	enough	sample	to	
understand	the	dataset

– Cluster	representatives
– Representative	images
– Few	blogs	that	cover	main	
areas…

Recap

• Model:	Independent	
activation
– Contagion	propagates	along	
edge	euv with	probability	puv

• Choose	set	of	k	starting	nodes	
to	get	max	coverage

Recap

• Suppose	we	magically	know	
each	activation	set	Sv that	will	
be	infected	starting	at	node	v
– Let	us	call	this	behavior	X1

• Finding	the	best	set	of	k	nodes	
(or	equivalently	sets	S)	is	hard

• We	are	looking	for	
approximation

Recap

• Greedy	algorithm:	
– Selecting	the	set	Svof	max	
marginal	coverage	

• Gives	approximation	
✓
1� 1

e

◆
·OPT

Proof	

• Idea:
• OPT	is	the	max	possible
• At	every	step	there	is	at	
least	one	element	that	
covers	at	least	1/k	of	
remaining:
– So	≥	(OPT	- current)	*	1/k

• Greedy	selects	one	such	
element

Proof	

• Idea:
• At	each	step	coverage	
remaining	becomes	

• Of	what	was	remaining	after	
previous	step

✓
1� 1

k

◆

Proof	

• After	k	steps,	we	have	
remaining	coverage	of	OPT

• Fraction	of	OPT	covered:

✓
1� 1

k

◆k

' 1

e

✓
1� 1

e

◆

Proof	of	the	main	claim

• At	every	step	there	is	at	least	one	element	that	covers	
at	least	1/k	of	remaining

• Suppose	the	unknown	set	of	elements	that	gives		OPT	
is	given	by	set	C,	so	OPT	=	f(C)

• And	suppose	Si	is	the	set	selected	by	greedy	upto step	i

• Claim:	At	every	step	there	is	at	least	one	element	in					
C	– Si that	covers	1/k	of	remaining:		(f(C)	– f(Si))	*	1/k

Proof	of	the	main	claim

• At	every	step	there	is	at	least	one	element	
that	covers	1/k	of	remaining:	(f(C)	– f(Si))	*	1/k

• At	step	0:	Suppose	to	the	contrary,	there	is	no	
such	element.	
– Then	C	cannot	give	OPT:	contradiction.
– So	there	is	at	least	one	such	element	

Proof	of	the	main	claim

• At	any	step	Si,	
–We	can	add	all	k	elements	from	C	to	get	at	least	
OPT

– So,	at	least	1	element	of	C	gives	(f(C)	– f(Si))	*	1/k

• Now	consider	Greedy
– If	greedy	chose	si at	step	i,	that	is	because	it	gives	
at	least	as	much	marginal	gain	as	any	element	in	C
• So,	si covers	at	least	(f(C)	– f(Si))/k

Homework

• Write	out	the	proof	nicely!

• Given	a	known	behavior	X1 (we	know	
activation	sets	Sv)
– Greedy	algorithm	gives	approximation

• But	our	model	is	probabilistic	
• Each	possible	behavior	Xi occurs	with	some	
probability	pi

• We	have	to	prove	that	the	expected	behavior	
in	the	model	is	submodular,	and	therefore	can	
use	a	greedy	algorithm

• Theorem:	
– Positive	linear	combinations	of	monotone	
submodular functions	is	monotone	submodular

• We	sum	over	all	possible	Xi,	weighted	by	their	
probability	pi.

• Non-negative	linear	combinations	of	
submodular functions	are	submodular,	
– Therefore	the	sum	of	all	X	is	submodular
– (homework!)

Linear	threshold	model

• Linear	contagion	threshold	model:

• Also	submodular	and	monotone

• Proof	ommitted.
– If	you	are	interested,	see	additional	reading:	
Kempe,	Kleinberg,	Tardos;	KDD03	

The	algorithm

• Estimate	behaviours Xi and	associated	pi
– Through	repeated	simulations
– Current	topic	of	research

• Use	greedy	algorithm	to	maximise expected	
marginal	gains

Observation	on	how	the	result	is	
approached

• Topic	&	motivation:
– Social	networks,	advertising,	adoption	etc

• Model
– Independent	activation

• Assume	we	are	given	a	graph.	For	each	edge	uv we	have	a	probability	puv of	
transmitting	contagion	etc

• Problem	statement
– Define	influence	maximisation:	Maximise the	number	of	nodes	

activated
– Starting	with	at	most	k	nodes.	

• Result:	Constant	factor	(1	– 1/e)	approximation	algorithm.

• Homework:	write	this	out	formally.	

Problem	with	submodular
maximization

• Can	be	expensive!
• Each	iteration	costs	O(n):	have	to	check	each	element	to	find	the	

best
– May	be	more:	“checks”	are	complex	and	depend	on	current	selection

• Problem	in	large	datasets
• Distributed	cluster	computation	can	help

– Split	data	into	multiple	computers
– Compute	and	merge	back	results:	Works	for	many	types	of	problems

• Ref:	Mirzasoleiman,	Karbasi,	Sarkar,	Krause;	Distributed	submodular maximization:	
Finding	 representative	elements	in	massive	data.	NIPS	2013.

Summary	

• Approximation	algorithms
• Critical	in	practical	scenario,	since	“perfect”	answer	
may	be	elusive
– We	can	find	approximations	without	even	knowing	the	
OPT!

• Critical	in	Machine	learning
– Learning	is	always	approximate
– We	never	know	the	perfect	answer	for	future
– Learning	theory	relies	on	probability	and	approximations

• Submodular optimisations are	a	powerful	set	of	tools

